matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeHom_G(V,W)=Hom_K(V,W)^G
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Hom_G(V,W)=Hom_K(V,W)^G
Hom_G(V,W)=Hom_K(V,W)^G < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hom_G(V,W)=Hom_K(V,W)^G: Beweis verstehen
Status: (Frage) überfällig Status 
Datum: 15:48 So 22.11.2009
Autor: Plapper

Aufgabe
Beweisen Sie: [mm] Hom_G(V,W)=Hom_K(V,W)^G [/mm] .

Hallo an alle!
Bei obiger Aussage ist G Gruppe, K Körper und V und W sind G-Moduln.
Nun zum Beweis (den ich so im Internet gefunden habe):
Seien V, W G-Moduln.
[mm] Hom_K(V,W) [/mm] wird zu einem G_Modul durch [mm] G\times Hom_K(V,W) \to Hom_K(V,W). [/mm] Dabei gilt: [mm] (\sigma, \Phi)\mapsto \sigma\Phi [/mm] := [mm] \sigma \Phi^{-1} \sigma, [/mm] wobei [mm] \sigma \in [/mm] G, [mm] \Phi \in Hom_K(V,W). [/mm]

-> Bis dahin ist noch nichts passiert, das ist eine Vorschrift, eine Defintion, die so auch schon bei mir gegeben war.

G operiert trivial auf K, d.h für alle k [mm] \in [/mm] K, [mm] \sigma \in [/mm] G: [mm] \sigma*k=k [/mm]

-> Das ist die Defintion dafür, wenn eine Gruppe trivial operiert.

Für ein [mm] \phi \in V^*=Hom_K(V,K) [/mm] gelte folgende Operation:
[mm] \sigma \phi [/mm] = [mm] \phi \circ \sigma^{-1} [/mm]

-> Woher kommt das nun? Ich kann mir die Gleichung nicht erklären.

Nach Definition gilt: f [mm] \in Hom_K(V,W)^G \gdw \sigma*f=f [/mm]
-> Ja, das ist auch eine Defintion
bzw. [mm] f\circ \sigma =\sigma \circ [/mm] f für alle [mm] \sigma \in [/mm] G.
-> Das wiederrum erschließt sich mir nicht.

[mm] \Rightarrow Hom_K(V,W)^G =Hom_G(V,W) [/mm]

Die letzte Folgerung kann ich auch nicht nachvollziehen.

Kann jemand helfen oder gar einen viel schöneren, einfacheren Beweis liefern?

Gruß
Plapper

        
Bezug
Hom_G(V,W)=Hom_K(V,W)^G: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 25.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]