matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperHomomorphismen und Normalteile
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Homomorphismen und Normalteile
Homomorphismen und Normalteile < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphismen und Normalteile: Beweis zu einem Lemma
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 29.06.2013
Autor: GraceLass

Aufgabe
Lemma:
Sei [mm] \phi [/mm] : G [mm] \to [/mm] G' ein Gruppenhomomorphismus.
(1) Ist N' normal in G', dann ist auch [mm] \phi^{-1}(N') [/mm] normal in G. Insbesondere ist [mm] ker(\phi) [/mm] ein Normalteiler von G.
(2) Ist [mm] \phi [/mm] surjektiv und N normal in G, dann gilt auch [mm] \phi(N) [/mm] ist normal in G'.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wir haben das bewiesen in der Vorlesung und ich verstehe den Beweis noch nicht so wirklich. Eigentlich hakt es nur an einer einzigen Stelle, aber die ist ziemlich wesentlich.
Wir haben gesagt, dass [mm] \phi^{-1}(N') [/mm] eine Untergruppe von G ist (anderes Lemma hatte das schon gezeigt). Dann sagen wir, dass g [mm] \in [/mm] G und [mm] n\in\phi^{-1}(N') [/mm] ist. Bis dahin alles klar. Jetzt kommt eine komische Rechnung aus der dann die Behauptung folgern soll:
[mm] \phi(gng^{-1}) [/mm] = [mm] \phi(g)\phi(n)\phi(g)^1 [/mm] (bis hierhin klar, da Homomorphismus)
Unser Prof. sagt aber jetzt, dass
[mm] \phi(g)\phi(n)\phi(g)^{-1}\in \phi(g)N'\phi(g)^{-1} [/mm] = N'
Wie kann man folgern, dass das gleich N' sein soll?
Wenn das nämlich geht, dann verstehe ich den Rest, weil dann sagt er einfach nur noch, dass
[mm] g\phi^{-1}(N')g^{-1} \subset \phi^{-1}(N') [/mm]
ist, was dann ja aus dem folgt, was ich nicht verstehe.

Wäre froh, über jeden Kommentar. :)

        
Bezug
Homomorphismen und Normalteile: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 So 30.06.2013
Autor: fred97


> Lemma:
>  Sei [mm]\phi[/mm] : G [mm]\to[/mm] G' ein Gruppenhomomorphismus.
>  (1) Ist N' normal in G', dann ist auch [mm]\phi^{-1}(N')[/mm]
> normal in G. Insbesondere ist [mm]ker(\phi)[/mm] ein Normalteiler
> von G.
>  (2) Ist [mm]\phi[/mm] surjektiv und N normal in G, dann gilt auch
> [mm]\phi(N)[/mm] ist normal in G'.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Wir haben das bewiesen in der Vorlesung und ich verstehe
> den Beweis noch nicht so wirklich. Eigentlich hakt es nur
> an einer einzigen Stelle, aber die ist ziemlich
> wesentlich.
>  Wir haben gesagt, dass [mm]\phi^{-1}(N')[/mm] eine Untergruppe von
> G ist (anderes Lemma hatte das schon gezeigt). Dann sagen
> wir, dass g [mm]\in[/mm] G und [mm]n\in\phi^{-1}(N')[/mm] ist. Bis dahin
> alles klar. Jetzt kommt eine komische Rechnung aus der dann
> die Behauptung folgern soll:
>  [mm]\phi(gng^{-1})[/mm] = [mm]\phi(g)\phi(n)\phi(g)^1[/mm] (bis hierhin
> klar, da Homomorphismus)
>  Unser Prof. sagt aber jetzt, dass
>  [mm]\phi(g)\phi(n)\phi(g)^{-1}\in \phi(g)N'\phi(g)^{-1}[/mm] = N'
>  Wie kann man folgern, dass das gleich N' sein soll?



N' ist doch normal in G'  !!!!


Was bedeutet denn das ???

FRED


>  Wenn das nämlich geht, dann verstehe ich den Rest, weil
> dann sagt er einfach nur noch, dass
>  [mm]g\phi^{-1}(N')g^{-1} \subset \phi^{-1}(N')[/mm]
>  ist, was dann
> ja aus dem folgt, was ich nicht verstehe.
>  
> Wäre froh, über jeden Kommentar. :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]