matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisHomotopie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Homotopie
Homotopie < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homotopie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Do 05.02.2009
Autor: Linn

Aufgabe
Aufgabe
In $ [mm] \IC [/mm] $ seien die Kurven $ [mm] \gamma_1 [/mm] $ und $ [mm] \gamma_2 [/mm] $ für $ [mm] t\in [0,2\pi] [/mm] $ definiert durch:

$ [mm] \gamma_1:= [/mm] $ 2cos(t) + 0,6sin(4t) + i(2sin(t) + 0,6sin(2t)).

$ [mm] \gamma_2:= [/mm] $ 0,4 + cos(t) + i sin(t).

zeigen Sie: $ [mm] \gamma_1 [/mm] $ ist homotop zu $ [mm] \gamma_2. [/mm] $

Ich habe die Lösung zu der Aufgabe. Da wird H so definiert:
H:[0,1]x[0,2*/pi] [mm] \to \IC [/mm]
H(s,t)= s(0,4 + cos(t) + i sin(t)) + (1-s)(2cos(t) + 0,6sin(4t) + i(2sin(t) + 0,6sin(2t)))
Wie komme ich jetzt auf das s und das 1-s ?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Homotopie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Do 05.02.2009
Autor: fred97


> Aufgabe
>  In [mm]\IC[/mm] seien die Kurven [mm]\gamma_1[/mm] und [mm]\gamma_2[/mm] für [mm]t\in [0,2\pi][/mm]
> definiert durch:
>  
> [mm]\gamma_1:=[/mm] 2cos(t) + 0,6sin(4t) + i(2sin(t) + 0,6sin(2t)).
>  
> [mm]\gamma_2:=[/mm] 0,4 + cos(t) + i sin(t).
>  
> zeigen Sie: [mm]\gamma_1[/mm] ist homotop zu [mm]\gamma_2.[/mm]
>  Ich habe die Lösung zu der Aufgabe. Da wird H so
> definiert:
>  H:[0,1]x[0,2*/pi] [mm]\to \IC[/mm]
>  H(s,t)= s(0,4 + cos(t) + i
> sin(t)) + (1-s)(2cos(t) + 0,6sin(4t) + i(2sin(t) +
> 0,6sin(2t)))
>  Wie komme ich jetzt auf das s und das 1-s ?
>  


Es ist doch H(s,t) = [mm] s\gamma_1(t) [/mm] + [mm] (1-s)\gamma_2(t) [/mm]
Bei festem t ist dies gerade die Parametrisierung der Vebindungsstrecke von [mm] \gamma_1(t) [/mm] und [mm] \gamma_2(t) [/mm]

FRED

>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Homotopie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Do 05.02.2009
Autor: Linn

Was heißt Parametrisierung der Vebindungsstrecke?

Ich hatte mir jetzt überlegt, dass ich s und 1-s wähle, damit
H(0,t)= [mm] \gamma_{1}(t) [/mm] und H(1,t)= [mm] \gamma_{2}(t) [/mm] gilt.

Könnte ich bei jeder Verformung s und 1-s nehmen?

Bezug
                        
Bezug
Homotopie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Do 05.02.2009
Autor: pelzig


> Was heißt Parametrisierung der Vebindungsstrecke?

Naja stell dir mal die beiden irgendwie in der komplexen Ebene verlaufenden Wege vor. Für ein fixiertes [mm] $t\in[0,2\pi]$ [/mm] ist dann die Abbildung [mm] $s\mapsto [/mm] H(s,t)$ genau die Verbindugsstrecke von [mm] $\gamma_1(t)$ [/mm] nach [mm] $\gamma_2(t)$. [/mm]

> Ich hatte mir jetzt überlegt, dass ich s und 1-s wähle,
> damit
> H(0,t)= [mm]\gamma_{1}(t)[/mm] und H(1,t)= [mm]\gamma_{2}(t)[/mm] gilt.

Durch die Definition [mm] $H(s,t)=s\gamma_2(t)+(1-s)\gamma_1(t)$ [/mm] ist doch genau das erfüllt.

> Könnte ich bei jeder Verformung s und 1-s nehmen?

In [mm] $\IC$ [/mm] bzw. [mm] $\IR^2$ [/mm] kannst du alle Wege auf diese Weise stetig ineinander überführen.

Gruß, Robert

Bezug
                                
Bezug
Homotopie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Do 05.02.2009
Autor: Linn

Alles klar, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]