matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikHypothesentest Fehler 2 Art
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "mathematische Statistik" - Hypothesentest Fehler 2 Art
Hypothesentest Fehler 2 Art < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypothesentest Fehler 2 Art: Fehler2Art,Normalapproximation
Status: (Frage) beantwortet Status 
Datum: 15:47 Fr 13.02.2009
Autor: oLman

Aufgabe
In einer Fabrik wird ein bestimmter Massenartikel auf einer Maschine hergestellt. Der Anteil
p der produzierten Artikel, die der Qualitätsnorm nicht voll genügen (Artikel zweiter Wahl),
betrage im Mittel 0,05. Produziert die Maschine zu viele Artikel zweiter Wahl, erfolgt eine
Wartung. Zur Überwachung wird der laufenden Produktion eine Stichprobe vom Umfang n
entnommen und nach folgendem Test verfahren: Die Nullhypothese H0 : p ≤ 0.05 wird
verworfen, falls in der Stichprobe mehr als 2 Artikel zweiter Wahl sind. Die Zufallsvariable
X beschreibe die Anzahl der Artikel zweiter Wahl in der Stichprobe. Die Produktion der
einzelnen Artikel werde als unabhängig angenommen.

a) Geben Sie die Verteilung der Zufallsvariablen X an.

b) Wie ist der Stichprobenumfang n zu wählen, damit der Fehler 2. Art für
p = 0.1 höchstens 0.25 beträgt? Bestimmen Sie n mit Hilfe der
Normalapproximation.

Zu

a.) Binomialverteilung

b.)  Wie definiere ich den Ablehnungsbereich? "..falls in der Stichprobe mehr als 2 Artikel 2 Wahl sind." -> p > 0.1 ?

Bestimmen sie n mithilfe der Normalapproximation.. Soweit sogut, allerdings brauche ich dafür mein Sn, welches die Summe aller Zufallsvariablen darstellt. Allerdings weiss ich ja nicht wieviele das sind oder?


lg
olman

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hypothesentest Fehler 2 Art: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Fr 13.02.2009
Autor: Al-Chwarizmi

Hallo oLman,

a.)  Binomialverteilung ist richtig; gewünscht ist aber
     wahrscheinlich etwas mehr als nur dieses Stichwort.

b.)  Hier wird angenommen, dass die Maschine (temporär)
     zu viel Ware 2.Wahl produziert, nämlich 10% statt
     maximal 5%.
     Bei einem Stichprobentest, wobei n Stück geprüft
     werden, resultiert mit der vorgegebenen Entscheidungs-
     regel "OK, wenn höchstens 2 Stück 2.Wahl" ein Fehler
     2. Art, falls tatsächlich [mm] X\le [/mm] 2, obwohl p=0.1 ist.

     Also nimmt man hier die Verteilung mit p=0.1 und
     einem noch unbekannten n, approximiert sie durch
     eine Normalverteilung [mm] (\mu [/mm] und [mm] \sigma [/mm] durch n ausdrücken!)
     und muss dann n so bestimmen, dass [mm] P(X\le 2)\le [/mm] 0.25.       (***)
     Dies führt dann auf eine Ungleichung für n.  


LG   Al-Chw.

(***)  Bei der Approximation durch die Normalverteilung
müsste die Stetigkeitskorrektur beachtet werden, also hat
man bei der Normalverteilung die Ungleichung $\ [mm] \red{P(X\le 2.5)\le 0.25}$ [/mm]





Bezug
                
Bezug
Hypothesentest Fehler 2 Art: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Sa 14.02.2009
Autor: oLman

Also ich steh noch irgendwie auf dem Schlauch..

Ich habe zur Normalapproximation die Formel:

[mm] \wurzel{n} [/mm] = [mm] \bruch{sn - np}{\wurzel{p(1-p)}} [/mm]

Wie drück ich jetzt [mm] \mu [/mm] und o durch n aus?

N(np, npq) ? Also N(0.1n,0.09n)?

Zudem weiss ich nicht wie ich die Standardisierte Summe bilden soll.. googeln hilft in Punkto "normalapproximation" auch nicht wirklich weiter :(


Bezug
                        
Bezug
Hypothesentest Fehler 2 Art: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Sa 14.02.2009
Autor: Al-Chwarizmi


> Ich habe zur Normalapproximation die Formel:
>  
> [mm]\wurzel{n}[/mm] = [mm]\bruch{sn - np}{\wurzel{p(1-p)}}[/mm]

> Wie drück ich jetzt [mm]\mu[/mm] und [mm] \sigma [/mm] durch n aus?

Wir haben p=0.1 und ein noch nicht bekanntes n.
Dann ist

        $\ E(X)\ =\ [mm] \mu\ [/mm] =\ n*p\ =\ 0.1*n$

        $\ Var(X)\ =\ n*p*(1-p)\ =\ 0.3*n$

        [mm] $\sigma\ [/mm] =\ [mm] \wurzel{Var(X)}\ [/mm] =\ [mm] \wurzel{0.3*n}$ [/mm]


> Zudem weiss ich nicht wie ich die Standardisierte Summe
> bilden soll..

und ich weiss nicht, weshalb du eine solche
"Standardisierte Summe" überhaupt brauchen
solltest ...


> googeln hilft in Punkto "normalapproximation"
> auch nicht wirklich weiter

Schau lieber unter "Normalverteilung" oder
"Binomialverteilung Normalverteilung".

LG

Bezug
                                
Bezug
Hypothesentest Fehler 2 Art: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 So 15.02.2009
Autor: oLman

Folglich eingesetzt hätte ich:

[mm] \wurzel{n} [/mm] = [mm] \bruch{s*n*0.1n}{0.3} \le [/mm] 0.25

oder habe ich einen denkfehler?

Bezug
                                        
Bezug
Hypothesentest Fehler 2 Art: Glockenkurve
Status: (Antwort) fertig Status 
Datum: 14:17 So 15.02.2009
Autor: Al-Chwarizmi


> Folglich eingesetzt hätte ich:
>  
> [mm]\wurzel{n}[/mm] = [mm]\bruch{s*n*0.1n}{0.3} \le[/mm] 0.25      [kopfschuettel]

da komm ich nicht mit ...



Hello ol'man,

ich schrieb:

b.)  Hier wird angenommen, dass die Maschine (temporär)
     zu viel Ware 2.Wahl produziert, nämlich 10% statt
     maximal 5%.
     Bei einem Stichprobentest, wobei n Stück geprüft
     werden, resultiert mit der vorgegebenen Entscheidungs-
     regel "OK, wenn höchstens 2 Stück 2.Wahl" ein Fehler
     2. Art, falls tatsächlich [mm] X\le [/mm] 2, obwohl p=0.1 ist.


     Also nimmt man hier die Verteilung mit p=0.1 und
     einem noch unbekannten n, approximiert sie durch
     eine Normalverteilung [mm] (\mu [/mm] und [mm] \sigma [/mm] durch n ausdrücken!)
     und muss dann n so bestimmen, dass [mm] P(X\le 2)\le [/mm] 0.25.       (***)
     Dies führt dann auf eine Ungleichung für n.

(***)  Bei der Approximation durch die Normalverteilung
müsste die Stetigkeitskorrektur beachtet werden, also hat
man bei der Normalverteilung die Ungleichung $\ [mm] \red{P(X\le 2.5)\le 0.25}$
[/mm]  



Nun denk dir die Glockenkurve der Normalverteilung.
Sie hat ihren höchsten Punkt an der Stelle [mm] \mu=0.1*n\,, [/mm]
und ihre Breite ist durch den Parameter [mm] \sigma=0.3\,\wurzel(n) [/mm]
bestimmt.
Nun legen wir an der Stelle x=2.5 einen Schnitt. Das
Gebiet im "linken Spitz", also links von dieser Stelle,
zwischen Kurve und x-Achse, steht für die Wahrschein-
lichkeit, dass [mm] X\le [/mm] 2.5 bzw. ganzzahlig ausgedrückt: [mm] X\le [/mm] 2.
Diese Fläche dieses Gebietes soll [mm] \le [/mm] 0.25 sein. Wir nehmen
den Grenzfall 0.25 und suchen in der Tabelle der Normal-
verteilungsfunktion den zugehörigen z-Wert. Es ist z=-0.6745.
Dies bedeutet, dass wir den Schnitt an der Stelle [mm] x=\mu-0.6745*\sigma [/mm]
legen müssen. So kommen wir zur Gleichung

      $\ [mm] \mu-0.6745*\sigma=0.1*n-0.6745*0.3\,\wurzel(n)=2.5$ [/mm]

Nun muss man diese Gleichung, bzw. die entsprechende
Ungleichung (= durch [mm] \le [/mm] ersetzt) nach n auflösen.

LG          

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]