matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieIdeal
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Ideal
Ideal < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Di 19.12.2006
Autor: Blefix

Aufgabe
Welche der folgenden Teilmengen sind Ideale? Dabei sei k stets Körper.

a) [mm] \{...,-4,-3,-2,0,2,3,4,...\}=\IZ [/mm] \ [mm] \{1,-1\} \subset \IZ [/mm]
b) [mm] I_n [/mm] := [mm] \{\summe_{i=1}^{m}a_i x^i | a_i \in k\} \subset [/mm] k[X] mit n [mm] \ge [/mm] 0 fest und m [mm] \ge [/mm] n beliebig
c) [mm] \{f \in k[X] | f(0) =0\} \subset [/mm] k[X]

Hallo alle miteinander,

Ich hab aus der Vorlesung folgende Definition für ein Ideal:

Es sei R ein Ring. Eine Teilmenge [mm] a\subseteq [/mm] R heißt Ideal, wenn

1) a (abelsche) Untergruppe in R
2) R*a [mm] \subseteq [/mm] a (d.h. r*a [mm] \in [/mm] a, [mm] \forall [/mm] r [mm] \in \IR, a\in [/mm] a)

ist.

Ich hab nun nochmal im Netz nachgeschaut und folgendes gefunden:

Eine Teilmenge I eines Ringes R heißt Linksideal, wenn

1: Die Null des Ringes liegt in I
2: Für alle a,b in I liegt a − b in I
3L: Für jedes a in I und r in R liegt ra in I
(Die Forderungen 1 und 2 sind dazu äquivalent, dass I eine Untergruppe von (R,+) ist.)

Ein Linksideal in R ist nichts anderes als ein Untermodul von R, aufgefasst als R-Linksmodul, entsprechend für Rechtsideale.

Eine Teilmenge I eines Ringes R heißt Rechtsideal, wenn neben 1 und 2 auch gilt

3R: Für jedes a in I und r in R liegt ar in I

Eine Teilmenge I eines Ringes R heißt beidseitiges Ideal, wenn sie Linksideal und Rechtsideal ist, also 1, 2, 3L und 3R erfüllt.

Ist der Ring kommutativ, dann fallen diese drei Begriffe zusammen, und man spricht schlicht von Idealen. In einem nichtkommutativen Ring können sie sich aber unterscheiden; "Ideal" wird dann auch abkürzend für "zweiseitiges Ideal" benutzt.


Jetzt hab ich mir zu a) folgendes überlegt:

1) Die Null ist nach Definition enthalten
2) Gegenbeispiel: Sei a=3 und b=2. Dann ist a-b=1 und somit nicht enthalten in der Teilmenge
Daraus folgt: Teilmenge kein Ideal.

Stimmt das schon, oder hab ich da etwas übersehen?

Bei b) und c) hab ich noch keine wirkliche Idee, da mir eine Vorstellung von den Elemente fehlt.

Hoffe jemand kann mir helfen.

Wünsche allen einen schönen Tag

Blefix


        
Bezug
Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Di 19.12.2006
Autor: statler

Mahlzeit!

> Welche der folgenden Teilmengen sind Ideale? Dabei sei k
> stets Körper.
>  
> a) [mm]\{...,-4,-3,-2,0,2,3,4,...\}=\IZ[/mm] \ [mm]\{1,-1\} \subset \IZ[/mm]
>  
> b) [mm]I_n[/mm] := [mm]\{\summe_{i=1}^{m}a_i x^i | a_i \in k\} \subset[/mm]
> k[X] mit n [mm]\ge[/mm] 0 fest und m [mm]\ge[/mm] n beliebig
>  c) [mm]\{f \in k[X] | f(0) =0\} \subset[/mm] k[X]
> Jetzt hab ich mir zu a) folgendes überlegt:
>  
> 1) Die Null ist nach Definition enthalten
>  2) Gegenbeispiel: Sei a=3 und b=2. Dann ist a-b=1 und
> somit nicht enthalten in der Teilmenge
>  Daraus folgt: Teilmenge kein Ideal.
> Stimmt das schon, oder hab ich da etwas übersehen?

Das hast du schon mal gut hingekriegt!

> Bei b) und c) hab ich noch keine wirkliche Idee, da mir
> eine Vorstellung von den Elemente fehlt.

b) Das ist nicht gut hingeschrieben, weil da bei n = 0 auch die leere Summe stehen könnte. Das soll dann sicher die 0 sein.
Wenn du dir ein paar hinschreibst, siehst du vllt., welche Pol. du erhältst. Vergleich mal mit c)

c) Das müßteste selbst hinkriegen, welche Polynome sind das denn? In Schul-Speak: Was ist der y-Achsen-Abschnitt?

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]