matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Induktion
Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Aufgabe 1
Status: (Frage) für Interessierte Status 
Datum: 09:41 Mi 07.11.2012
Autor: Blitzmerker

Seien [mm] $r_{-1}; r_0; r_1; [/mm] ...; [mm] r_{t+1}; q_1; q_2; [/mm] ...; [mm] q_{t+1} \in [/mm] N$ mit
[mm] $\forall [/mm] i [mm] \in [/mm] f1; ...; tg$ :
ri-2 = qi * ri-1 + ri ^ 0 < ri < ri -1
und
rt-1 = qt+1 * rt;
d.h., es gilt r¡1 u r0 = rt. Beweisen Sie, dass man dann gewisse [mm] \alpha [/mm] ; [mm] \beta \in [/mm]  Z mit
[mm] \alpha [/mm] * r-1 + [mm] \beta [/mm] r0 = rt auf folgende Weise berechnen kann:
Seien
u-1 := 0; u0 := 1;
v-1 := 1; v0 := 0;
[mm] \forall [/mm] i [mm] \in [/mm] f1; ...; tg : ui := qi * ui-1 + ui-2 ^ vi := qi * vi-1 + vi-2:
Dann gilt
rt = [mm] ((-1)^t+1 [/mm] *vt )*r-1
+
[mm] ((-1)^t* [/mm] ut)*r0

Hinweis: Man beweise durch Induktion Äuber i [mm] \in [/mm] {1; 2; ...; t}:
ri = (-1)i * (-vi [mm] \in [/mm] r-1 + ui [mm] \in [/mm] r0): </task>
Guten Morgen,

also folgendes, mir ist die Induktion ja mittlerweile ganz geläufig.
Doch bei diese Aufgabenstellung erschlägt mich wiedermal.

Ich weiß laut Aufgabe das ich dies mit der Induktion Beweisen soll.
Allerdings kann ich mir die Vorschrift der Induktion nicht herleiten.
Quasi die Gleichung womit man beginnen kann?

Wie müsste dann das Aussehen?

Mein Vorschlag [mm] \summe_{i=1}^{n} [/mm] = (-1)i * (-vi [mm] \in [/mm] r-1 + ui [mm] \in [/mm] r0)

und dann setze ich wie oben die Werte für r-1, r0 und für i 1 ein für den Induktionsanfang?

Danach das ganze dann für (i+1) für den Induktionschritt und Ausrechnen?

Mit freundlichen Grüßen,

Johannes

        
Bezug
Induktion: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:45 Mi 07.11.2012
Autor: Blitzmerker

Aufgabe
Hinweis

Mir ist gerade Aufgefallen das mein Text nicht zu 100% Richtig übersetzt wurde.

Für mein Induktionsbeispiel gilt für /in = *

Also korrekt ri = (-1)î * (-vi *r-1 + ui *r0)

Bezug
        
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:55 Mi 07.11.2012
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>  
> Seien r-1; r0; r1; ...; rt+1; q1; q2; ...; qt+1 \in N mit
>  \forall i \in f1; ...; tg :
>  ri-2 = qi * ri-1 + ri ^ 0 < ri < ri -1
>  und
>  rt-1 = qt+1 * rt;
>  d.h., es gilt r¡1 u r0 = rt. Beweisen Sie, dass man dann
> gewisse \alpha ; \beta  \in  Z mit
>  \alpha * r-1 + \beta r0 = rt auf folgende Weise berechnen
> kann:
>  Seien
>  u-1 := 0; u0 := 1;
>  v-1 := 1; v0 := 0;
>  \forall i \in f1; ...; tg : ui := qi * ui-1 + ui-2 ^ vi :=
> qi * vi-1 + vi-2:
>  Dann gilt
>  rt = ((-1)^t+1 *vt )*r-1
>  +
>   ((-1)^t* ut})*r0
>  
> Hinweis: Man beweise durch Induktion Äuber i \in {1; 2;
> ...; t}:
>  ri = (-1)i * (-vi \in r-1 + ui \in r0):
>  Guten Morgen,
>  
> also folgendes, mir ist die Induktion ja mittlerweile ganz
> geläufig.
>  Doch bei diese Aufgabenstellung erschlägt mich
> wiedermal.
>  
> Ich weiß laut Aufgabe das ich dies mit der Induktion
> Beweisen soll.
>  Allerdings kann ich mir die Vorschrift der Induktion nicht
> herleiten.
>  Quasi die Gleichung womit man beginnen kann?
>  
> Wie müsste dann das Aussehen?
>  
> Mein Vorschlag \summe_{i=1}^{n} = (-1)i * (-vi \in r-1 + ui
> \in r0)
>  
> und dann setze ich wie oben die Werte für r-1, r0 und für
> i 1 ein für den Induktionsanfang?
>  
> Danach das ganze dann für (i+1) für den Induktionschritt
> und Ausrechnen?
>  
> Mit freundlichen Grüßen,
>  
> Johannes


Das kann doch kein Mensch entziffern !!!!

FRED

Bezug
        
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:10 Mi 07.11.2012
Autor: chrisno

Hallo Johannes,

ich habe mal die erste Zeile etwas lesbarer gestaltet. Damit hast Du eine Vorlage, mit der Du hoffentlich weiterkommst.

Bezug
                
Bezug
Induktion: Lesbarkeit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:02 Mi 07.11.2012
Autor: Blitzmerker

Ich muss mich entschuldigen war mir nicht bewusst gewesen das die einzelnen kürzel nicht korrekt übertragen wurden.

Danke für das erneute Einstellen.

Natürlich besteht meine Frage weiterhin. ;-)

Bezug
                        
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Mi 07.11.2012
Autor: fred97


> Ich muss mich entschuldigen war mir nicht bewusst gewesen
> das die einzelnen kürzel nicht korrekt übertragen
> wurden.
>  
> Danke für das erneute Einstellen.
>  
> Natürlich besteht meine Frage weiterhin. ;-)

Es hilft nichts ! Mit so was

     ri = (-1)i * (-vi  [mm] \in [/mm]  r-1 + u1i  [mm] \in [/mm]  r0)

kann man nun gar nichts anfangen.

Steht da

   $ [mm] r_i [/mm] = [mm] (-1)^i [/mm] * [mm] (-v_i [/mm] $ [mm] \in [/mm] $ r-1 + [mm] u_1 [/mm] $ [mm] \in [/mm] $ [mm] r_0) [/mm] $  ?

Wenn ja, was soll das bedeuten ?

FRED


Bezug
                                
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Mi 07.11.2012
Autor: Blitzmerker

Oh.. ich versteh gar nicht warum das so ausgesehen hat. Hmm..
Sorry für das hin und her.

Also da steht genau:

ri = [mm] (-1)^i [/mm] * (-vi * r-1 + ui * r0)

so ist es wohl verständlich.



Bezug
                                        
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Mi 07.11.2012
Autor: schachuzipus

Hallo,


> Oh.. ich versteh gar nicht warum das so ausgesehen hat.
> Hmm..
>  Sorry für das hin und her.
>  
> Also da steht genau:
>  
> ri = [mm](-1)^i[/mm] * (-vi * r-1 + ui * r0)


>  
> so ist es wohl verständlich.

Nein, ist es absolut nicht, in der Klammer steht -vi*r-1

Und das ist nach Punkt-vor Strichrechnung [mm]-vir-1[/mm]

Aber das ist wohl kaum gemeint. Und [mm]-vi\cdot{}(r-1)[/mm] ist bestimmt auch nicht gemeint ...

Ich zeige dir jetzt, wie man Indizes schreibt und du tippst alles nochmal leserlich ein:

Ich denke, du meinst mit vi eher [mm]v_{i}[/mm], was man so eintippt: v_{i}$

Und r-1 meint wohl [mm]r_{-1}[/mm], was man so schreibt r_{-1}

Indizes macht man also mit dem Unterstrich _ und setzt den Index in geschweifte Klammern {} , also AltGr+7 bzw. AltGr+0

Bei Exponenten läuft das genauso, aber statt des Unterstrich musst du das Dach ^ nehmen (links neben der 1)


Gruß

schachuzipus


Bezug
        
Bezug
Induktion: Beitrag bearbeiten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 Mi 07.11.2012
Autor: angela.h.b.

Hallo,

wie Du merkst, ist Dein Text nicht gerade leserlich, und wenn nach und nach in Mitteilungen erklärt wird, wie es eigentlich heißen sollte, ist das auch nur bedingt nützlich, denn Deine Helfer wollen doch gerne Deinen Beitrag in einem Zug lesen können und nicht als Flickschuster tätig werden.

Was tun?
Wenn Du Deinen Beitrag aufrufst, hast Du unten, dort, wo Du "neue Frage stellen", "Mitteilung schreiben" u.a. anklicken kannst, auch die Möglichkeit "eigenen Artikel bearbeiten" (oder so ähnlich) zu wählen.

Tu das bitte. Versetze den Beitrag in einen einwandfrei lesbaren Zstand, mit Indizes und allem Pipapo.
Laß Dir eine Vorschau anzeigen, damit Du sicher sein kannst, daß alles richtig ist.
Danach kannst Du ihn wieder auf "Frage" setzen.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]