matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktion der exp-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Induktion der exp-Funktion
Induktion der exp-Funktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion der exp-Funktion: Frage, Idee, Ansatz
Status: (Frage) beantwortet Status 
Datum: 16:58 Do 19.06.2014
Autor: Hero991

Aufgabe
Sei x <0. Berechnen Sie [mm] \summe_{k=0}^{\infinity} e^{kx} [/mm]


Hallo,
ich brauche Hilfe bei der Aufgabe. Mir fehlt ein Ansatz oder eine Idee wie da ran gehen könnte. Als Tipp von meinem Tutor habe ich bekommen, dass man sich die Umform-Möglichkeiten angucken soll.
Dass habe ich gemacht aber ich komme da nicht weiter. Also ich kenne folgende Möglichkeiten exp-Funktion umzuformen:
[mm] \summe_{n=0}^{\infty}\bruch{x}{n!} [/mm] = [mm] \limes_{n\rightarrow\infty}(1+\bruch{x}{n})^{n}=exp(x). [/mm]

Also Wenn mir jemand bei der Aufgabe helfen könnte, wäre ich echt dankbar :)

        
Bezug
Induktion der exp-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Do 19.06.2014
Autor: abakus


> Sei x <0. Berechnen Sie [mm]\summe_{k=0}^{\infinity} e^{kx}[/mm]

>

> Hallo,
> ich brauche Hilfe bei der Aufgabe. Mir fehlt ein Ansatz
> oder eine Idee wie da ran gehen könnte. Als Tipp von
> meinem Tutor habe ich bekommen, dass man sich die
> Umform-Möglichkeiten angucken soll.
> Dass habe ich gemacht aber ich komme da nicht weiter. Also
> ich kenne folgende Möglichkeiten exp-Funktion umzuformen:
> [mm]\summe_{n=0}^{\infty}\bruch{x}{n!}[/mm] =
> [mm]\limes_{n\rightarrow\infty}(1+\bruch{x}{n})^{n}=exp(x).[/mm]

>

> Also Wenn mir jemand bei der Aufgabe helfen könnte, wäre
> ich echt dankbar :)

Hallo,
es gilt [mm]e^{kx}=(e^x)^k[/mm].
Substituiere [mm]e^x=q[/mm].
Kommt dir [mm]\summe_{k=0}^{\infinity} q^{k}[/mm] bekannt vor?
Gruß Abakus

Bezug
                
Bezug
Induktion der exp-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Do 19.06.2014
Autor: Hero991

Hey :)
ja, dass ist die Geometrische Reihe  mit  |q|<1, da x<0 gilt  [mm] \summe_{k=0}^{\infinity} q^{k} [/mm] = [mm] \bruch{1}{1-q}. [/mm]

Könnte man auch sagen: da |q| < 1, konvergiert [mm] q^{k} [/mm] gegen Null also ist [mm] \summe_{k=0}^{\infinity} q^{k} [/mm] = [mm] \bruch{1}{1-q}=0 [/mm] ?

Bezug
                        
Bezug
Induktion der exp-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Do 19.06.2014
Autor: DieAcht

Hallo Hero,


>  ja, dass ist die Geometrische Reihe  mit  |q|<1, da x<0
> gilt  [mm]\summe_{k=0}^{\infinity} q^{k}[/mm] = [mm]\bruch{1}{1-q}.[/mm]

Was hat das mit [mm] $x<0\$ [/mm] zu tun?

> Könnte man auch sagen: da |q| < 1, konvergiert [mm]q^{k}[/mm] gegen
> Null

Ja, es gilt:

      [mm] $\lim_{k\to\infty}q^k=0$ [/mm] für alle [mm] $|q|<1\$. [/mm]

> also ist [mm]\summe_{k=0}^{\infinity} q^{k}[/mm] =
> [mm]\bruch{1}{1-q}=0[/mm] ?

Nein. Du kommst durcheinander.

Es gilt:

      [mm] \sum_{k=0}^{\infty}q^k=\lim_{n\to\infty}\sum_{k=0}^{n}q^k=\lim_{n\to\infty}\frac{1-q^{n+1}}{1-q}=\frac{1}{1-q} [/mm] für alle [mm] $|q|<1\$. [/mm]

Mit

      [mm] $1>q:=e^x>0$ [/mm] für alle [mm] $x<0\$ [/mm]

erhalten wir

      [mm] \sum_{k=0}^{\infty}e^{kx}=\sum_{k=0}^{\infty}(e^{x})^k=\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}=\frac{1}{1-e^x}=-\frac{1}{e^x-1} [/mm] für alle [mm] $x<0\$. [/mm]

Falls du etwas nicht verstanden hast, dann zögere bitte
nicht nachzufragen.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]