matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseInduktion für ganze Zahlen?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - Induktion für ganze Zahlen?
Induktion für ganze Zahlen? < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion für ganze Zahlen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Do 05.02.2009
Autor: ChopSuey

Hallo,

die vollständige Induktion wird ja immer für Zahlen $\ n, n+1 $ mit $\ n [mm] \in \IN [/mm] $ gezeigt, also für die Menge der natürlichen Zahlen.

Nun würde mich interessieren, ob sich das Ganze nicht auch auf die Menge $\ [mm] \IZ [/mm] $ der ganzen Zahlen ausweiten ließe?

Ich kenne die Peanoschen Axiome zur beschreibung der natürlichen Zahlen und auch das 5. Axiom, dass der Nachfolger $\ n' $ einer natürlichen Zahl $\ n $ stets $\ n' = n +1 $ ist.

Wenn ich das bisher richtig verstanden habe, ist das auch der Grund, warum die vollständige Induktion in der Menge der nat. Zahlen $\ [mm] \IN [/mm] $ so mächtig ist.

Doch die Menge der ganzen Zahlen $\ [mm] \IZ$ [/mm] ist doch auch "bloß" die Menge der multiplikativen Inverse aller Elemente aus $\ [mm] \IN [/mm] $ vereint mit der Menge der natürlichen Zahlen $\ [mm] \IN [/mm] $ und somit sollte zumindest das 5. Peano Axiom auch in $\ [mm] \IZ$ [/mm] gelten, oder etwa nicht?

Angenommen, ich möchte mit Hilfe der vollst. Induktion zeigen, dass eine Zahl der Form $\ 2n$ immer gerade ist. Kann ich das nicht auch für ein $\ n [mm] \in \IZ [/mm] $ zeigen?

Würde mich über eine Antwort freuen.
Vielen Dank

Grüße
ChopSuey

        
Bezug
Induktion für ganze Zahlen?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Do 05.02.2009
Autor: M.Rex

Hallo

Du kannst auch in [mm] \IZ [/mm] ohne Probleme die Induktion durchführen, du musst aber zwei Ind-Schritte machend.

Du musst also Zeigen:  Gilt die Aussage [mm] \mathcal{A} [/mm] für [mm] z_{i} [/mm] , also deinen Induktionsanfang, so gilt [mm] \mathcal{A} [/mm] auch für [mm] z_{i}+1 [/mm] UND [mm] z_{i}-1 [/mm]

Marius


Bezug
                
Bezug
Induktion für ganze Zahlen?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 Do 05.02.2009
Autor: ChopSuey

Hallo,

ist einleuchtend. Danke!

Viele Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]