matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseInduktion mit Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Induktionsbeweise" - Induktion mit Ungleichung
Induktion mit Ungleichung < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion mit Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Mo 16.07.2012
Autor: Trikolon

Aufgabe
Beweise mit Induktion:

[mm] \bruch{1}{3} n^3 [/mm] < [mm] \summe_{k=1}^{n} k^2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also:
IA: n=1
1/3 < 1 ist klar.

IV: Die Behauptung sei bereits für ein n [mm] \in [/mm] IN gezeigt

IS : n--> n+1


An dieser Stelle hänge ich, im muss doch zeigen, dass 1/3 [mm] (n+1)^3 [/mm] < [mm] \summe_{k=1}^{n+1} k^2 [/mm] ist. Irgendwie kriege ich es nicht hin, diese Ungleichung zu zeigen, wäre nett, wenn jemand helfen könnte.

        
Bezug
Induktion mit Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Mo 16.07.2012
Autor: ChopSuey

Moin!

> Beweise mit Induktion:
>  
> [mm]\bruch{1}{3} n^3[/mm] < [mm]\summe_{k=1}^{n} k^2[/mm]
>  Ich habe diese
> Frage in keinem Forum auf anderen Internetseiten gestellt.
>
> Also:
>  IA: n=1
>  1/3 < 1 ist klar.
>  
> IV: Die Behauptung sei bereits für ein n [mm]\in[/mm] IN gezeigt
>  
> IS : n--> n+1
>  
>
> An dieser Stelle hänge ich, im muss doch zeigen, dass 1/3
> [mm](n+1)^3[/mm] < [mm]\summe_{k=1}^{n+1} k^2[/mm] ist. Irgendwie kriege ich
> es nicht hin, diese Ungleichung zu zeigen, wäre nett, wenn
> jemand helfen könnte.

Um die Summe rechterhand auf [mm]\summe_{k=1}^{n+1} k^2[/mm] zu kriegen, benötigst du einen weiteren Summanden, nämlich:

[mm]\summe_{k=1}^{n+1} k^2 = \summe_{k=1}^{n} k^2 + (n+1)^2[/mm]

Also

$ [mm] \frac{1}{3}n^3+ (n+1)^2 \le \summe_{k=1}^{n+1} k^2 [/mm] $

$ [mm] \frac{1}{3}n^3+ n^2 [/mm] +2n + 1 [mm] \le \summe_{k=1}^{n+1} k^2 [/mm] $

$ [mm] \frac{1}{3}n^3+ n^2 [/mm] +n + 1 < [mm] \frac{1}{3}n^3+ n^2 [/mm] +2n + 1 [mm] \le \summe_{k=1}^{n+1} k^2 [/mm] $

$ [mm] \frac{1}{3}(n+1)^3 [/mm] < [mm] \frac{1}{3}n^3+ n^2 [/mm] +2n + 1 [mm] \le \summe_{k=1}^{n+1} k^2 [/mm] $

Also gilt die Aussage für alle $ n [mm] \in \IN [/mm] $.

Falls nicht sofort klar ist, warum ich nach unten abeschätzt habe, ein Hinweis: multipliziere $ [mm] \frac{1}{3}(n+1)^3 [/mm] $ aus.

Viele Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]