matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseInduktion und Ungleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - Induktion und Ungleichungen
Induktion und Ungleichungen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion und Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 So 13.11.2011
Autor: yann

Aufgabe
Zeige, dass für alle $ n [mm] \in \IN [/mm] $ mit $ n [mm] \ge [/mm] 5 $ gilt:
$ [mm] n^2 \le 2^n [/mm] $.


Einen schönen Sonntag wünsche ich der Community!

Momentan habe ich einen Denkfehler bei der gegebenen Aufgabe. So hab ich meine Bearbeitung auf dem Blatt stehen:

Behauptung:
Die Aussage $ "E(n): [mm] n^2 \le 2^n [/mm] $ gilt für alle $ n [mm] \in \IN [/mm]  $ mit $ n [mm] \ge [/mm] 5 $.

Beweis:

Induktionsanfang:

Für $ n=5 $ gilt: $ [mm] n^2=5^2=25 \le 32=2^5 [/mm] $.
Damit ist $ E(5) $ wahr.

Induktionsvoraussetzung:

Für ein $n [mm] \in \IN$ [/mm] mit $ n [mm] \ge [/mm] 5 $ gilt $ E(n) $.

Zu zeigen: $ E(n+1) $, also $ [mm] (n+1)^2 \le 2^{(n+1)} [/mm] $

Induktionsschritt:

Es ist $ [mm] (n+1)^2 [/mm] = [mm] n^2+2n+1 [/mm] $.
Es ist außerdem [mm] $2^{(n+1)} [/mm] = [mm] 2^n*2$. [/mm]

Mit der IV gilt:

[mm] $2^{(n+1)} [/mm] = [mm] 2^n*2 \ge n^2*2 [/mm] = [mm] n^2+n^2 \ge n^2+2n+1 [/mm] = [mm] (n+1)^2$ [/mm]

[mm] $n^2+n^2 \ge n^2+2n+1§ [/mm] gilt deshalb, weil auch folgendes gilt:
[mm] $n^2 [/mm] > 2n+1$ für alle [mm] $n\ge [/mm] 5$.

Das Problem, das ich habe ist folgendes:

Die Ungleichung $ [mm] n^2 \le 2^n [/mm] $ stimmt natürlich auch für $ n=4 $. Nicht mehr jedoch für $ n=3 $, denn $ 9 [mm] \not \le [/mm] 8 $.

Müssten nicht die selben Intervalle für [mm] $n^2 [/mm] > 2n+1$ gelten, wo doch aber $ 9>7 $ für $ n=3 $ gilt?

Offensichtlich habe ich einen Denkfehler gemacht, wo liegt dieser?

Danke im Voraus,
yann

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion und Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 13.11.2011
Autor: MathePower

Hallo yann,


[willkommenmr]


> Zeige, dass für alle [mm]n \in \IN[/mm] mit [mm]n \ge 5[/mm] gilt:
> [mm]n^2 \le 2^n [/mm].
>  Einen schönen Sonntag wünsche ich der
> Community!
>  
> Momentan habe ich einen Denkfehler bei der gegebenen
> Aufgabe. So hab ich meine Bearbeitung auf dem Blatt
> stehen:
>  
> Behauptung:
>  Die Aussage [mm]"E(n): n^2 \le 2^n[/mm] gilt für alle [mm]n \in \IN [/mm]
> mit [mm]n \ge 5 [/mm].
>  
> Beweis:
>  
> Induktionsanfang:
>  
> Für [mm]n=5[/mm] gilt: [mm]n^2=5^2=25 \le 32=2^5 [/mm].
>  Damit ist [mm]E(5)[/mm]
> wahr.
>  
> Induktionsvoraussetzung:
>  
> Für ein [mm]n \in \IN[/mm] mit [mm]n \ge 5[/mm] gilt [mm]E(n) [/mm].
>  
> Zu zeigen: [mm]E(n+1) [/mm], also [mm](n+1)^2 \le 2^{(n+1)}[/mm]
>  
> Induktionsschritt:
>  
> Es ist [mm](n+1)^2 = n^2+2n+1 [/mm].
>  Es ist außerdem [mm]2^{(n+1)} = 2^n*2[/mm].
>  
> Mit der IV gilt:
>  
> [mm]2^{(n+1)} = 2^n*2 \ge n^2*2 = n^2+n^2 \ge n^2+2n+1 = (n+1)^2[/mm]
>  
> [mm]$n^2+n^2 \ge n^2+2n+1§[/mm] gilt deshalb, weil auch folgendes
> gilt:
>  [mm]n^2 > 2n+1[/mm] für alle [mm]n\ge 5[/mm].
>  
> Das Problem, das ich habe ist folgendes:
>  
> Die Ungleichung [mm]n^2 \le 2^n[/mm] stimmt natürlich auch für [mm]n=4 [/mm].
> Nicht mehr jedoch für [mm]n=3 [/mm], denn [mm]9 \not \ge 8 [/mm].
>  
> Müssten nicht die selben Intervalle für [mm]n^2 > 2n+1[/mm]
> gelten, wo doch aber [mm]9>7[/mm] für [mm]n=3[/mm] gilt?
>


Nein.

Wichtig ist nur, daß diese Ungleichung mindestens für  [mm]n\ge5[/mm] gilt.

Das Intervall für die die Ungleichung [mm]n^{2}>2n+1[/mm] gilt,
kann natürlich größer sein (hier: [mm]n \ge 2[/mm]).


> Offensichtlich habe ich einen Denkfehler gemacht, wo liegt
> dieser?
>  
> Danke im Voraus,
>  yann
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]