matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Induktionsbeweis
Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Korrektur
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:54 Di 11.11.2008
Autor: steirermat

Aufgabe 1
Beweisen Sie durch vollständige Induktion:

[mm] \forall n\varepsilon \IN :\summe_{k=1}^{n}2^{k}\vektor{k \\ 2}= 2^{n}(n^{2}-3n+4)-4 [/mm]

Aufgabe 2
Beweisen Sie durch vollständige Induktion:

[mm] \forall n\varepsilon \IN :\summe_{k=0}^{n}2^{-k}\vektor{k \\ 2}= 2-2^{-n-1}(n^{2}-3n+4) [/mm]

Hi,

ich habe für Beispiel 1 folgende Hypothese:

[mm] \summe_{k=1}^{n+1}2^{k}\vektor{k \\ 2}= 2^{n+1}((n+1)^{2}-3(n+1)+4)-4 [/mm]

und für Beispiel 2:

[mm] \summe_{k=0}^{n+1}2^{-k}\vektor{k \\ 2}= 2-2^{-n-2}((n+1)^{2}-3(n+1)+4) [/mm]

Ich komme bei beiden beispielen auf keine Lösung.
Vieleicht kann mir jemand helfen.

Danke.

lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:18 Mi 12.11.2008
Autor: barsch

Hi,

habe dir eben versucht bei deiner anderen Frage bezüglich eines Induktionsbeweises (siehe hier die allgemeine Vorgehensweise zu erläutern. Hier musst du analog zu dem anderen Beispiel vorgehen. Zuerst den Induktionsanfang, dann die Induktionsvoraussetzung und schließlich den Induktionsschritt. Auch hier: Hast du dich evtl vertan bei den Summenindizes? Nehme an, beide Reihen beginnen bei k=2, weil für k<2 [mm] \vektor{k \\ 2} [/mm] nicht definiert ist (oder wie habt ihr das in der Vorlesung definiert?)

Versuche dich erst einmal an dem anderen Beispiel und wenn dann noch Fragen zu diesen beiden Aufgaben auftauchen, einfach noch einmal nachfragen.

MfG barsch

Bezug
                
Bezug
Induktionsbeweis: Bin.-Koeff. k über 2 mit k < 2
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:23 Mi 12.11.2008
Autor: Marcel

Hallo Barsch,

> Hi,
>  
> habe dir eben versucht bei deiner anderen Frage bezüglich
> eines Induktionsbeweises (siehe
> hier die allgemeine
> Vorgehensweise zu erläutern. Hier musst du analog zu dem
> anderen Beispiel vorgehen. Zuerst den Induktionsanfang,
> dann die Induktionsvoraussetzung und schließlich den
> Induktionsschritt. Auch hier: Hast du dich evtl vertan bei
> den Summenindizes? Nehme an, beide Reihen beginnen bei k=2,
> weil für k<2 [mm]\vektor{k \\ 2}[/mm] nicht definiert ist (oder wie
> habt ihr das in der Vorlesung definiert?)

mit ziemlicher Sicherheit ist für $k [mm] \in \IN_0\,,$ [/mm] $k [mm] \le [/mm] 2$ auch ${k [mm] \choose [/mm] 2}$ definiert, z.B. wenn man die Definition
$${m [mm] \choose n}=\frac{\produkt_{k=1}^n (m+1-k)}{n!}$$ [/mm]

zugrundelegt (dabei kann sogar neben $n [mm] \in \IN_0$ [/mm] auch $m [mm] \in \IC$ [/mm] gefordert werden). Damit wäre ${k [mm] \choose [/mm] 2}=0$ für [mm] $k=\black{0}$ [/mm] oder [mm] $k=1\,.$ [/mm]

(Noch allgemeiner: Siehe []Wiki.)

Gruß,
Marcel

Bezug
                        
Bezug
Induktionsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:55 Mi 12.11.2008
Autor: barsch

Hi Marcel,

okay, da habe ich wieder etwas dazugelernt.

Danke.

MfG barsch

Bezug
                
Bezug
Induktionsbeweis: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:59 Mi 12.11.2008
Autor: steirermat

Wie gehe ich jetzt weiter vor?

Beim umformen von Beispiel 1 erhalte ich folgendes:

[mm] 2^{n}(n^{2}-3n+4)+(n+1)^{2}n-4 [/mm]

Was ist der Trick jetzt dabei auf [mm] 2^{n+1} [/mm] zu kommen?

Danke.

lg

Bezug
                        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Mi 12.11.2008
Autor: angela.h.b.


> Wie gehe ich jetzt weiter vor?
>  
> Beim umformen von Beispiel 1 erhalte ich folgendes:
>  
> [mm]2^{n}(n^{2}-3n+4)+(n+1)^{2}n-4[/mm]
>  
> Was ist der Trick jetzt dabei auf [mm]2^{n+1}[/mm] zu kommen?

Hallo,

Du sprichst in Rätseln...

Vielleicht rechnest Du mal vor, was Du bisher gemacht hast, und verrätst, wo Du hin möchtest.

"Beim Umformen": was hast Du wie umgeformt?

"auf [mm]2^{n+1}[/mm] kommen": was einst Du damit?

Gruß v. Angela


.

Bezug
                                
Bezug
Induktionsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:48 Mi 12.11.2008
Autor: steirermat

Entschuldigung, ich habe mich auf das 1. Beispiel aus meiner Frage bezogen.

Mittlerweile habe ich meinen Rechenfehler gefunden und somit hat sich die Frage erübrigt.

Danke für die Hilfe.

lg



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]