matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseInduktionsbeweis Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Induktionsbeweise" - Induktionsbeweis Ungleichung
Induktionsbeweis Ungleichung < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Sa 12.10.2013
Autor: mathe-antifreak

Aufgabe
Beweisen Sie durch Induktion:
[mm] 2n^{2}>(n+1)^{2} [/mm]    für alle    [mm] n\ge3 [/mm]

Hallo an Alle.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hier mein Ansatz:

Induktionsanfang: n = 3:
[mm] 2*3^{2} =18>16=(3+1)^{2} [/mm]    OK

Induktionsschluss: n+1
Linke Seite: [mm] 2(n+1)^{2}=2n^{2}+4n+2>(n+1)^{2}+4n+2=n^{2}+6n+3 [/mm] ...

Rechte Seite: [mm] ((n+1)+1)^{2}=n^{2}+4n+4 [/mm] ....

So mein Problem: Ich weiß nicht, ob mir noch ein (oder mehrere) Schritte fehlen, bis ich den Beweis schließen kann. Wenn ich recht überlege, wäre für alle n [mm] \ge3 [/mm] der Ausdruck [mm] n^{2}+6n+3 [/mm] > [mm] n^{2}+4n+4. [/mm] Aber ich bin mir nicht sicher, ob ich das dann so stehen lassen kann.
Kann mir wer sagen, ob noch was fehlt, oder ob der Beweis schon fertig ist?
Vielen Dank und schönes Wochenende

        
Bezug
Induktionsbeweis Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Sa 12.10.2013
Autor: abakus


> Beweisen Sie durch Induktion:
> [mm]2n^{2}>(n+1)^{2}[/mm] für alle [mm]n\ge3[/mm]
> Hallo an Alle.

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Hier mein Ansatz:

>

> Induktionsanfang: n = 3:
> [mm]2*3^{2} =18>16=(3+1)^{2}[/mm] OK

>

> Induktionsschluss: n+1
> Linke Seite:
> [mm]2(n+1)^{2}=2n^{2}+4n+2>(n+1)^{2}+4n+2=n^{2}+6n+3[/mm] ...

>

> Rechte Seite: [mm]((n+1)+1)^{2}=n^{2}+4n+4[/mm] ....

>

> So mein Problem: Ich weiß nicht, ob mir noch ein (oder
> mehrere) Schritte fehlen, bis ich den Beweis schließen
> kann. Wenn ich recht überlege, wäre für alle n [mm]\ge3[/mm] der
> Ausdruck [mm]n^{2}+6n+3[/mm] > [mm]n^{2}+4n+4.[/mm] Aber ich bin mir nicht
> sicher, ob ich das dann so stehen lassen kann.
> Kann mir wer sagen, ob noch was fehlt, oder ob der Beweis
> schon fertig ist?
> Vielen Dank und schönes Wochenende

Hallo,
was du machst ist so ein Wischiwaschi, aber kein Induktionsbeweis.
Nach dem (erledigten) Induktionsanfang musst du folgenden Satz beweisen:
Wenn für ein n[mm]\ge[/mm]3 gilt [mm]2n^{2}>(n+1)^{2}[/mm], dann gilt für dieses n auch [mm]2(n+1)^{2}>((n+1)+1)^{2}[/mm].
Das wesentliche Mittel zum Beweis der zweiten Ungleichung ist die Annahme der Richtigkeit der ersten Ungleichung.
Die linke Seite ist (umgeformt) [mm]\blue{2n^2}+\red{4n+2}[/mm] , die rechte Seite ist [mm]\blue{(n+1)^2}+\red{2*(n+1)+1^2}=\blue{(n+1)^2}+\red{2*n+3}[/mm].

Aus der Gültigkeit von [mm]2n^{2}>(n+1)^{2}[/mm] folgt nun durch beidseitige Addition von (um auf den linken Term zu kommen) [mm]\red{4n+2}[/mm] die Gültigkeit der Ungleichung
[mm]2n^{2}+4n+2>(n+1)^{2}+4n+2[/mm]
Du hast nun noch zu zeigen, dass dies wiederum größer als [mm](n+1)^2+2n+3[/mm] ist.
Sehr sauber geht das, wenn man die Ungleichung [mm]2n^{2}+4n+2>(n+1)^{2}+4n+2[/mm]
gezielt fortsetzt mit
[mm]2n^{2}+4n+2>(n+1)^{2}+4n+2=(n+1)^{2}+2n+3\green{+2n-1}[/mm]
Jetzt kann man argumentieren, dass für n>2 der Term 2n-1 garantiert positiv ist.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 7m 4. fred97
ULinAEw/Eigenwerte und Matrix
Status vor 10h 01m 7. Tobikall
UAnaR1Funk/L Beweis ohne Logarithmusdef.
Status vor 12h 33m 8. leduart
UAnaR1/Reaktion - erwünscht
Status vor 13h 11m 2. Infinit
USons/Punktwolken vergleichen?
Status vor 15h 58m 1. alex1992
UStoc/Beweis Signifikanzniveau
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]