matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseInduktionsschritt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Induktionsbeweise" - Induktionsschritt
Induktionsschritt < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsschritt: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 18:52 Sa 02.02.2013
Autor: DragoNru

Aufgabe
[mm] \produkt_{m=0}^{n} (1+x^2^m) [/mm] = [mm] \bruch{1-x^2^n^+^1}{1-x} [/mm]

Hallo,
sry wegen neuem thread aber konnte im alten nicht die option für neue frage finden.
geht wieder um en induktionsschritt. habe zwar ein Ansatz, aber weiss nicht genau, ob das so mathematisch in ordnung ist

n [mm] \to [/mm] n+1

[mm] \bruch{1-x^2^n^+^2}{1-x} [/mm] = [mm] \produkt_{m=0}^{n} (1+x^2^m) [/mm] * [mm] (1+x^2^n^+^1) [/mm]

        = [mm] \bruch{1-x^2^n^+^1}{1-x} [/mm] * [mm] (1+x^2^n^+^1) [/mm]

meine Idee ist, die Zähler zu multiplizieren, dann das Binom auflösen und ab da sitzt ich wieder in einer Sackgasse :(
ist der weg falsch, oder fehlen mir da bloß die Mathekenntnisse, um weiter zu machen?

wichtig: Schaff es nicht, zwei mal hoch " ^ " zu machen . das " m " ist nochmal über der zwei [mm] 2^m [/mm] , genauso das " n+1 "  [mm] 2^n^+^1, [/mm] hoffentlich versteht ihr was ich meine :)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Induktionsschritt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Sa 02.02.2013
Autor: Gonozal_IX

Hiho,

zu deinem Editorproblem: Du willst ja einen neuen Ausdruck (nämlich eine neue Potenz) als Potenz schreiben. Das schaffst du, indem du den neuen Ausdruck in geschweifte Klammern schreibst.
D.h. x^{2^n} liefert dir das gewünschte [mm] x^{2^n} [/mm]

Analog brauchst du nicht bei n+1 jedes Zeichen extra hochstellen, pack das einfach in geschweifte Klammern:

Also: 2^{n+1} liefert [mm] $2^{n+1}$, [/mm] bitte nicht 2^n^+^1 schreiben, das ist saumäßiger Code ;-)

Und das höchste der Gefühle ist dann natürlich [mm] x^{2^{n+1}} [/mm] :-)
Das geht einfach mit verschachtelten Klammern, das wird dir nämlich durch die Eingabe von  x^{2^{n+1}} geschenkt.

Zu deiner Aufgabe:
Dein Ansatz ist völlig richtig, beim Aufschreiben allerdings noch ein paar Hinweise:


> n [mm]\to[/mm] n+1
>
> [mm]\bruch{1-x^2^n^+^2}{1-x}[/mm] = [mm]\produkt_{m=0}^{n} (1+x^2^m)[/mm] * [mm](1+x^2^n^+^1)[/mm]

Das erste Gleichheitszeichen ist so nicht richtig, weil du diese Gleichheit ja eigentlich erst zeigen willst.
Fange also an mit:

[mm]\produkt_{m=0}^{n+1} (1+x^{2^m}) = \produkt_{m=0}^{n} (1+x^{2^m})* (1+x^{2^{n+1}})[/mm]

Du willst ja gerade zeigen, dass da dein Bruch rauskommt.


> meine Idee ist, die Zähler zu multiplizieren, dann das Binom auflösen und ab da sitzt ich wieder in einer Sackgasse :(

Warum?

> ist der weg falsch, oder fehlen mir da bloß die Mathekenntnisse, um weiter zu machen?

Der Weg ist völlig richtig.
Alles was du brauchst, ist die dritte binomische Formel und Potenzgesetze.
Mach mal!

MFG,
Gono.

Bezug
                
Bezug
Induktionsschritt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Sa 02.02.2013
Autor: DragoNru

Genial, vielen dank.
Hast mir mut gemacht die aufgabe zu lösen :D
war ja gar nicht so schwer, wie es aussieht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]