matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesInduzierte Matrixnorm ...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Induzierte Matrixnorm ...
Induzierte Matrixnorm ... < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induzierte Matrixnorm ...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Sa 14.08.2010
Autor: qsxqsx

Abend,

Habe übermogen LineA Test, und das mit den Matrixnormen hab ich immer noch nicht (so) im Griff.

Sei T die n x n Matrix T = [mm] diag(\bruch{1}{u^{n-1}},\bruch{1}{u^{n-2}},...,\bruch{1}{u},1), [/mm] u > 0

Mit [mm] ||x||_{u} [/mm] := [mm] ||T^{-1}*x||_{\infty} [/mm] wird eine Norm induziert.

Das ist die Zeilensummennorm. Ich weiss wie man die berechnet. Auch hab ich den Beweis vor mir liegen, dass das wirklich eine Norm induziert.
Ausserdem, gilt für Diagonalmatrizen, das die Inverse, einfach gebildet wird, in dem man die Diagonalelemente mit hoch -1 nimmt.

Jetzt hab ich aber zwei Aufgaben mit Lsg die ich nicht verstehe:

1.

Bestimmen sie zu gegebener Matrix A die Matrix B für die gilt:

[mm] ||A||_{u} [/mm] = [mm] ||B||_{\infty} [/mm]

Lösung: B = [mm] T^{-1}*A*T [/mm]

2.

Berechnen sie [mm] ||C||_{u} [/mm] für

C = [mm] \pmat{ 0 & 1 & 0 \\ 0 & 0 & ... \\ 0 & 0 & 0 } [/mm]

C ist so eine Verschobene Einheitsmatrix, beliebig gross...

Lösung:
[mm] ||C||_{u} [/mm] = [mm] ||u*C||_{\infty} [/mm] = [mm] u*||C||_{\infty} [/mm] = u

Ich weiss vor allem nicht wie ich eben zu einer Matrix A oder C oder welche auch immer diese induzierte norm berechnen soll. Da steht ja bei der Def.
[mm] ||x||_{u} [/mm] := [mm] ||T^{-1}*x||_{\infty} [/mm]
x ist ja ein Vektor, wie soll ich die Norm einer Matrix C jetzt bestimmen?

Danke!!

...

        
Bezug
Induzierte Matrixnorm ...: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 So 15.08.2010
Autor: mathfunnel

Hallo qsxqsx,

die von der Vektorraumnorm [mm] $\|\cdot\|_u$ [/mm] induzierte Matrixnorm (Operatornorm) [mm] $\|\cdot\|_u$ [/mm] (gleiche Bezeichnung) ist wie folgt definiert:

[mm] $\|A\|_{u} [/mm] := [mm] \sup\limits_{\|x\|_u = 1}\|Ax\|_u [/mm] = [mm] \sup\limits_{\|T^{-1}x\|_\infty = 1}\|T^{-1}Ax\|_\infty$ [/mm]

($x$ Vektor, $A$ Matrix, $ T = [mm] diag(\bruch{1}{u^{n-1}},\bruch{1}{u^{n-2}},...,\bruch{1}{u},1)$) [/mm]


LG mathfunnel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]