matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenInfimum und Supremum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Infimum und Supremum
Infimum und Supremum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum und Supremum: Beweis
Status: (Frage) beantwortet Status 
Datum: 09:40 Do 13.11.2008
Autor: Babsi86

Aufgabe
Sei [mm] (a_{n}) n\in\IN [/mm] eine beschränkte Folge
Wir definieren eine Folge [mm] (A_{m}) m\in\IN [/mm] durch
[mm] A_{m}:= \bruch{a_{0}+a_{1}+....+a_{m}}{m+1} [/mm]

a) Beweise [mm] \limes_{n\rightarrow\infty}inf a_{n}\le\limes_{m\rightarrow\infty}inf A_{m}\le\limes_{m\rightarrow\infty}sup A_{m}\le\limes_{n\rightarrow\infty}sup a_{n} [/mm]

b) wende dies an um zu zeigen dass

[mm] \limes_{m\rightarrow\infty} \bruch{1+\bruch{1}{2}+\bruch{1}{3}+...+\bruch{1}{m}+\bruch{1}{m+1}}{m+1}=0 [/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich kriege keinen Ansatz hin
Da ich nicht weiß wie die a geht kann ich dies auch nicht auf die b anwenden
Danke für eureMithilfe

        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Do 13.11.2008
Autor: angela.h.b.


> Sei [mm](a_{n}) n\in\IN[/mm] eine beschränkte Folge
>  Wir definieren eine Folge [mm](A_{m}) m\in\IN[/mm] durch
>  [mm]A_{m}:= \bruch{a_{0}+a_{1}+....+a_{m}}{m+1}[/mm]
>  
> a) Beweise [mm]\limes_{n\rightarrow\infty}inf a_{n}\le\limes_{m\rightarrow\infty}inf A_{m}\le\limes_{m\rightarrow\infty}sup A_{m}\le\limes_{n\rightarrow\infty}sup a_{n}[/mm]

>  Ich kriege keinen Ansatz hin

Hallo,

wenn man solch eine Aussage beweisen will, ist es ja in der Regel nützlich, zuvor die Aussage verstanden zu haben? Hast Du das?


Bei mir geht das oft nicht so schnell. Dann versuche ich, mich an meinen eigenen Haaren aus dem Sumpf zu ziehen:

1. Ich würde mir hier  zum Verständnis der Aussage erstmal eine beschränkte Folge ausdenken, sagen wir

    [mm] (a_n):=( [/mm] 3,4,5,3,4,5,7,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4 ... )

     Danach kann man mal ein paar Folgenglieder von [mm] A_m [/mm] aufschreiben.

2. Eigentlich sollte dieser Punkt lieber Punkt 1. sein, denn an erster Stelle muß die Klärung der verwendeten Begriffe stehen. Hier:

     Wie sind limes superior und limes inferior definiert?

3. Gibt es bei [mm] (a_n) [/mm]  limes superior und limes inferior? Wenn ja: wie sind die Werte?

4. Ist die zu beweisende Aussage auf dieses Beispiel bezogen plausibel?

5. Nun erst ist der Punkt gekommen, an welchem man übers Beweisen  nachdenken könnte.

Die Punkte 1. -4. sind Lösungsansätze, die auch bei fehlender Beweisidee möglich sind, und die Du in Zukunft machen und mitposten solltest.


Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]