matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenInhomogene DGL 2 Grades
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Inhomogene DGL 2 Grades
Inhomogene DGL 2 Grades < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhomogene DGL 2 Grades: Inhomogener Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 16:45 Mi 24.02.2010
Autor: Deko

Aufgabe
Folgende Gleichung ist gegeben

y´´+y´-2y=g(x)

G(x) stellt eine Störfunktion dar die in diesem Fall als

g(x) = 3*e^4x ist  

Gefragt ist die Lösung der DGL

Ansatz ist relativ easy mit Exponentialansatz
Aus dem folgt

[mm] \lambda [/mm] ² + [mm] \lambda [/mm] -2 =o
=> [mm] \lambda [/mm] 1 = 1 und [mm] \lambda [/mm] 2 = -2
=> y0 = [mm] C1*e^x [/mm] + C2 *e^-2x

Nun wird für die Störfunktion ein ansatz gesucht
Ich wähle den Ansatz
yp= A * e^4x

(weil 4 keine Lösung der charakteristischen Gleichung ist) <- so steht in meinem buch

Hier meine erste Frage: Was ist die Charakteristische Gleichung?
Dem ergebnis zufolge muss es
[mm] \lambda [/mm] ² + [mm] \lambda [/mm] -2 =o  sein.
Was macht die Charakteristische Gleichung aus und wie erkenn ich sie?

Nun da ich den ansatz für die Inhomogene Lösung bestimmt habe komm ich ncith weiter da ich nicht weiß wie ich mit diesem ansatz verfahren soll.
Wäre super wenn mir da einer auf die sprünge helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Inhomogene DGL 2 Grades: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Do 25.02.2010
Autor: mathestudent25

hey hey ....

also die char gleichung hast du ja schon gelöst, das ist die mit dem lambda =)
sie ist die lösung der homogenen gleichung.

du hast nun als ansatz für deine inhomogene A*e^(4x) gewählt. das ist dein ansatz für deine partikuläre lösung vom y, also [mm] y_p. [/mm]
dann setzt du dein [mm] y_p [/mm] in deine differentialgleichung ein und machst einen koeffizientenvergleich um auf dieses A zu kommen ...
in deinem fall:
[mm] y_p''+y_p'- 2*y_p=3*e^{4x}. [/mm]

zum schluss ergibt sich dann die gesamtlösung aus der summe deiner lösung der homogenen PLUS der lösung der inhomogenen gleichung, also in deinem fall [mm] y=c_1*e^x [/mm] + [mm] c_2*e^{-2x}+A*e^{4x} [/mm] und dein A hast du ja dann durch den koeffizientenvergleich bestimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]