matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesInjektive abbildung Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Injektive abbildung Beweis
Injektive abbildung Beweis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektive abbildung Beweis: Erklärung vom Beweis
Status: (Frage) beantwortet Status 
Datum: 12:43 Sa 25.08.2012
Autor: MatheJunge

Aufgabe
Es seien X und Y Mengen. Dann gibt es eine injektive Abbildung von X nach Y oder von Y nach X

Hallo :) Ich hoffe, mir kann jemand den beweis erklären..meine konkreten fragen hab ich dazu geschrieben.

Beweis:

Es sei A die Menge aller Injektionen von einer Teilmenge von X in eine Teilmenge von Y
(wieso ist dies der Ansatz und warum betrachtet man Teilmengen??)

Wir führen auf A eine Halbordnung ein.
I /le J , falls Def(I) /subseteq Def(J) und J|Def(I) = I
(wie kommt man darauf??)

Wir wenden das Lemma von Zorn an. Jede Kette K in A hat eine obere Schranke
[mm] I_{0}: \bigcup [/mm] Def(I) [mm] \to [/mm] Y

Deshalb gibt es ein maximales Element [mm] I_{max}. [/mm] Der Definitionsbereich [mm] Def(I_{max}) [/mm] ist gleich X oder der Bildbereich gleich Y.
(nehmen wir an, dass das stimmt..wieso reicht das für den Beweis aus??)


Danke sehr :-) LG
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Injektive abbildung Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Sa 25.08.2012
Autor: Helbig

Hallo MatheJunge,

>  
> Deshalb gibt es ein maximales Element [mm]I_{max}.[/mm] Der
> Definitionsbereich [mm]Def(I_{max})[/mm] ist gleich X oder der
> Bildbereich gleich Y.
>  (nehmen wir an, dass das stimmt..wieso reicht das für den
> Beweis aus??)

Sei $D$ der Definitionsbereich von [mm] $I_{\max}$. [/mm]

Ist $D=X$, so haben wir mit [mm] $I_\max$ [/mm] eine Injektion von $X$ nach $Y$ gefunden.

Andernfalls gibt es [mm] $x\in X\setminus [/mm] D$.

Angenommen, es gäbe ein [mm] $y\in Y\setminus {I_\max }(D)$. [/mm] Dann könnte man eine Injektion [mm] $J\colon D\cup \{x\} \to [/mm] Y$ durch [mm] $J_{| D}= I_\max$ [/mm] und $J(x)=y$ definieren. Dieses $J$ wäre echt größer als [mm] $I_\max$ [/mm] bzgl. der auf $A$ definierten Halbordnung $--$ im Widerspruch zur Maximalität von [mm] $I_\max$. [/mm] Also ist [mm] ${I_\max} [/mm] (D)=Y$ und mit der Inversen von [mm] $I_\max$ [/mm] habe wir eine Injektion von $Y$ nach $X$ gefunden.

Gruß Wolfgang


Bezug
        
Bezug
Injektive abbildung Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Sa 25.08.2012
Autor: Marcel

Hallo,

> Es seien X und Y Mengen. Dann gibt es eine injektive
> Abbildung von X nach Y oder von Y nach X
>  Hallo :) Ich hoffe, mir kann jemand den beweis
> erklären..meine konkreten fragen hab ich dazu
> geschrieben.
>  
> Beweis:
>  
> Es sei A die Menge aller Injektionen von einer Teilmenge
> von X in eine Teilmenge von Y
>  (wieso ist dies der Ansatz und warum betrachtet man
> Teilmengen??)

sehe es als Experiment: Man macht es, weil man es machen kann, und
hat die Hoffnung, dass es etwas bringt. Wenn man bei jedem Beweis
direkt wüßte, was zum Ziel führt, wären Beweise doch meist sehr einfach!
(Und wenn man bei jedem Experiment alle Einflüsse ausblenden könnte,
wären Experimente bzw. deren Ergebnisse sicher sehr langweilig.)
  
Und die Idee dieser Definition fällt natürlich nicht ganz vom Himmel,
sondern ihr werdet Euch sicher vorher mit entsprechenden Begriffen
befasst haben.

Das einzige, was man vielleicht sagen sollte: Wenn eine der Mengen
leer ist, ist die "leere Abbildung" natürlich injektiv. Also kann man o.E.
annehmen, dass beide Mengen nicht leer sind. Und dass
[mm] $$A=\{i: P \to Q: P\subseteq X \text{ und }Q \subseteq Y\,, i \text{ ist injektiv}\}$$ [/mm]
auch nicht leer ist, folgt dann, indem man einfach eine einelementige Teilmenge
von [mm] $P\,$ [/mm] in eine einelementige Teilmenge von [mm] $Q\,$ [/mm] abbildet.

P.S.
Wenn ihr mal den Mittelwertsatz beweisen werdet, wird auch eine Funktion
dafür "vom Himmel fallen". Natürlich fällt diese nicht ganz vom Himmel,
sondern man war auf der Suche nach einer passenden Funktion, auf die
man den Zwischenwertsatz anwenden konnte - und hat sie gefunden. Ob
auf konstruktivem Weg oder wie auch immer, interessiert doch dabei dann
nicht mehr, wenn man nachgewiesen hat, dass diese alles an
Voraussetzungen erfüllt, was sie erfüllen sollte und wenn man mit ihrer
Hilfe zum Ziel gekommen ist.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]