matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInjektivität / Surjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Injektivität / Surjektivität
Injektivität / Surjektivität < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität / Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Do 12.10.2006
Autor: diego

Aufgabe
Untersuchen Sie die folgenden Abbildungen auf Injektivität und auf Surjektivität.

(1) f: [mm] \IR \to \IR, [/mm] f(x) = (x-1) / (x² + 1) für alle x [mm] \in \IR [/mm]

Hallo,

zu erst, ich habe die Frage in keinem Forum auf anderen Internetseiten gestellt.

So, jetzt mein Lösungsvorschlag bzw. meine Frage

Injektivität: f(x) = f(x’)                    Im folgenden ist x’ = y
(x-1) / (x²+1) = (y-1) / (y²+1)
(x-1) * (y²+1) = (y-1) * (x² + 1)
xy² + x - y² -1 = yx² + y - x² -1
xy² + x - y² = yx² + y - x²
Ist die Injektivität damit bewiesen???
Surjektivität: Ich glaube es ist surjektiv, da für jedem  x - Wert ein y-Wert zugeordnet werden kann, der Fall dass im Nenner Null steht ausgeschlossen ist.

Vielen Dank für eure Hilfe!


        
Bezug
Injektivität / Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Do 12.10.2006
Autor: DaMenge

Hi,

> Injektivität: f(x) = f(x’)                    Im folgenden
> ist x’ = y
>   (x-1) / (x²+1) = (y-1) / (y²+1)
>   (x-1) * (y²+1) = (y-1) * (x² + 1)
>   xy² + x - y² -1 = yx² + y - x² -1
>   xy² + x - y² = yx² + y - x²
>   Ist die Injektivität damit bewiesen???

nein, noch nicht ganz - du musst ja zeigen, dass aus f(x)=f(x') FOLGT, dass x=x' sein muss.
(oder um es anders zu sagen : unterschiedliche x-Werte werden auch auf unterschiedliche f(x)-Werte abgebildet...)
bei dir sollte dann also irgendwann x=y rauskommen ,damit es injektiv ist..

kleiner Hinweis: was ist f(0) und f(-1) ?!?


>  Surjektivität: Ich glaube es ist surjektiv, da für jedem  
> x - Wert ein y-Wert zugeordnet werden kann, der Fall dass
> im Nenner Null steht ausgeschlossen ist.

ja die Funktion istauf ganz R definiert, aber das heißt nicht surjektivität.
surjektiv bedeutet, dass auch jedes y aus dem Bildbereich wirklich getroffen wird, also genauer:
sei f eine Abbildung von X anch Y
surjektiv ist f wenn jedes y aus Y mindestens einmal getroffen wird und injektiv, wenn es höchstens einmal getroffen wird...

du müsstest also allgemein zu einem gegebenen y ein entspr. x angeben, so dass f(x)=y

Schau dir doch mal den Graph der Funktion an - wird jedes y getroffen?
Aber auch hier solltest du nicht zu lange suchen, denn was erkennst du, wenn du die größen des Zählers und Nenners vergleichst?

viele Grüße
DaMenge

Bezug
                
Bezug
Injektivität / Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Do 12.10.2006
Autor: diego

Hallo DaMenge,

erstmal Danke für deine Antwort.

Erst zur Injektivität:
Ich habe jetzt deine beiden Vorschläge probiert und komme zu folgenden Ergebnissen:
f(0)
0y² +0 - y² = y0² + y - 0²
0+0-y²=0+y-0
-y² = y
Wenn x = y, also y = 0, dann ist 0=0 und die Aussage stimmt

f(-1)
(-1)y² + (-1) - y² = y (-1)² +y - (-1²)
-y² -1 - y² = y +y -1
-y² -y² = 2y
0=2y
Dann müsste y hier auch 0 sein, damit die Aussage wahr ist, oder?

Dann habe ich noch einen zweiten Ansatz probiert, der mir aber leider erst jetzt eingefallen ist.
Für f(2)=1/5 und f(3)=1/5, also gibt es nicht nur ein Urbild, f kann also nicht injektiv sein. Ist das jetzt richtig?

Bei der surjektivität bin ich noch nicht so viel weiter gekommen, da ich noch nicht so ganz verstanden habe wie ich das raus finde.  Also f(x) kann nicht <0 sein. Hat das etwas damit zu tun?

Bezug
                        
Bezug
Injektivität / Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 Do 12.10.2006
Autor: Sashman

Moin Diego!

Bei Surjektivität ist zu zeigen, dass jedes [mm] y\in\IR [/mm] auch ein Urbild in [mm] \IR [/mm] besitzt.

Annahme f sei surjektiv.

Dann gibt es zu jedem [mm] y\in\IR [/mm] ein [mm] x\in\IR [/mm] mit f(x)=y.
Insbesondere existier zu y=1 ein solches [mm] x\in\IR. [/mm]
Für dieses x gilt dann:

[mm] f(x)=\frac{x-1}{x^2+1}=1 [/mm]

[mm] \gdw [/mm]

[mm] x^2+1=x-1 [/mm]

[mm] \gdw [/mm]

[mm] 0=x^2-x+2 [/mm]

mit Lösungsformel für quadratische Gleichungen:

[mm] x_{1,2}=\frac{1}{2}\pm\wurzel{\frac{1}{4}-2} [/mm]

[mm] \Rightarrow [/mm] es existiert kein [mm] x\in\IR [/mm] mit [mm] \frac{x-1}{x^2+1}=1 [/mm]

also war unsere Annahme falsch f ist nicht surjektiv

Schönen gruß nach Hagen
Sashman


Bezug
                        
Bezug
Injektivität / Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Do 12.10.2006
Autor: DaMenge

Hi,


>  f(0)
>  0y² +0 - y² = y0² + y - 0²
>  0+0-y²=0+y-0
>  -y² = y
>  Wenn x = y, also y = 0, dann ist 0=0 und die Aussage
> stimmt
>  
> f(-1)
>  (-1)y² + (-1) - y² = y (-1)² +y - (-1²)
>  -y² -1 - y² = y +y -1
>  -y² -y² = 2y
>  0=2y
>  Dann müsste y hier auch 0 sein, damit die Aussage wahr
> ist, oder?

Was hast du denn hier versucht?
also ich sehe nicht, wieso du dort jetzt die werte eingesetzt hast, aber :

>
> Dann habe ich noch einen zweiten Ansatz probiert, der mir
> aber leider erst jetzt eingefallen ist.
> Für f(2)=1/5 und f(3)=1/5, also gibt es nicht nur ein
> Urbild, f kann also nicht injektiv sein. Ist das jetzt
> richtig?


Das ist richtig!
das meinte ich eigentlich auch mit : f(0)=-1 und f(-1)=-1

bei der surjektivität wurde dir ja nun schon geholfen..

viele grüße
DaMenge

Bezug
                                
Bezug
Injektivität / Surjektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Fr 13.10.2006
Autor: diego

Danke, jetzt hab ich die Aufgabe auch verstanden! Versuche mich jetzt an den anderen Teilaufgaben...
Melde mich also wahrscheinlich nochmal...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]