matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenInjektivität, Surjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Injektivität, Surjektivität
Injektivität, Surjektivität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität, Surjektivität: Bei Funktion bestimmen
Status: (Frage) beantwortet Status 
Datum: 12:42 So 03.03.2013
Autor: narcotik

Aufgabe
[mm] \bruch{(4x+4)(x+2)(x^2-2x-3)}{x-3} [/mm] für x [mm] \in \IR [/mm] \ {3}

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi Leute!

Nachdem mir im Forum hier das letzte Mal so schnell und super geholfen wurde, kommt hier noch eine Frage im Rahmen meiner Klausurvorbereitung:

Obige Funktion ist gegeben. Gefragt wird hier nun, ob die Funktion injektiv, surjektiv und/oder bijektiv ist. Was die drei Begriffe bedeuten ist mir mittlerweile geläufig, allerdings weiß ich nicht, wie man dass bei einer gegebenen Funktion schnell herausfindet, ohne sich die Funktion jetzt bildlich vorzustellen o.ä.. Gibt es da irgendeinen Trick mit dem ich schnell sagen kann, ob davon etwas zutrifft?

MfG

Walter

        
Bezug
Injektivität, Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 So 03.03.2013
Autor: Diophant

Hallo,

> [mm]\bruch{(4x+4)(x+2)(x^2-2x-3)}{x-3}[/mm] für x [mm]\in \IR[/mm] \ {3}
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hi Leute!
>
> Nachdem mir im Forum hier das letzte Mal so schnell und
> super geholfen wurde, kommt hier noch eine Frage im Rahmen
> meiner Klausurvorbereitung:
>
> Obige Funktion ist gegeben. Gefragt wird hier nun, ob die
> Funktion injektiv, surjektiv und/oder bijektiv ist. Was die
> drei Begriffe bedeuten ist mir mittlerweile geläufig,
> allerdings weiß ich nicht, wie man dass bei einer
> gegebenen Funktion schnell herausfindet, ohne sich die
> Funktion jetzt bildlich vorzustellen o.ä.. Gibt es da
> irgendeinen Trick mit dem ich schnell sagen kann, ob davon
> etwas zutrifft?

Gehen wir mal rückwärts vor. Wenn du möchtest, dass wir klären, ob eine Funktion surjektiv ist dann solltest du stets die Zielmenge mit angeben. Auch und gerade, weil diese hier eigentlich offensichtlich ist, ist das hier wichtig. Das mit dem bildlich vorstellen hat hier eh seine Tücken. Ich würde dir raten, mal den Zähler vollends zu faktorisieren. Dann müsste dir auffallen, weshalb die Funktion (sofern sie eine Funktion [mm]f: \IR\setminus\{3\}\rightarrow\IR[/mm] ist) nicht surjektiv ist.

Mit der Injektivität ist es einfacher: offensichtlich gibt es mehrere Nullstellen...


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]