matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisInjektivität im Komplexen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Injektivität im Komplexen
Injektivität im Komplexen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Di 26.05.2015
Autor: Trikolon

Aufgabe
Seien G [mm] \subseteq \IC [/mm] ein konvexes Gebiet und F: [mm] G-->\IC [/mm] holomorph mit stetiger Ableitung F'. Zeige: Ist ReF' nullstellenfrei, so ist F Injektiv.
Genügt es zu verlangen, dass F' nullstellenfrei ist?

Hallo,

den eigentlichen Beweis habe ich gemeistert ;-) Allerdings fehlt mir ein passendes Gegenbeispiel zur der Frage, ob es genügt, dass F' nullstellenfrei ist... Könntet ihr mir diesbezüglich bitte auf die Sprünge helfen?

Danke!

        
Bezug
Injektivität im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:44 Mi 27.05.2015
Autor: fred97


> Seien G [mm]\subseteq \IC[/mm] ein konvexes Gebiet und F: [mm]G-->\IC[/mm]
> holomorph mit stetiger Ableitung F'.


Hä ? Die Ableitung einer holomorphen Funktion ist immer stetig.





> Zeige: Ist ReF'
> nullstellenfrei, so ist F Injektiv.
> Genügt es zu verlangen, dass F' nullstellenfrei ist?
>  Hallo,
>  
> den eigentlichen Beweis habe ich gemeistert ;-) Allerdings
> fehlt mir ein passendes Gegenbeispiel zur der Frage, ob es
> genügt, dass F' nullstellenfrei ist... Könntet ihr mir
> diesbezüglich bitte auf die Sprünge helfen?


Spring mal auf die Expo.

FRED

>  
> Danke!


Bezug
                
Bezug
Injektivität im Komplexen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:39 Mi 27.05.2015
Autor: Trikolon


> > Seien G [mm]\subseteq \IC[/mm] ein konvexes Gebiet und F: [mm]G-->\IC[/mm]
> > holomorph mit stetiger Ableitung F'.
>
>
> Hä ? Die Ableitung einer holomorphen Funktion ist immer
> stetig.
>  
>
> so lautet aber in der Tat die Aufgabenstellung...
>
>
> > Zeige: Ist ReF'
> > nullstellenfrei, so ist F Injektiv.
> > Genügt es zu verlangen, dass F' nullstellenfrei ist?
>  >  Hallo,
>  >  
> > den eigentlichen Beweis habe ich gemeistert ;-) Allerdings
> > fehlt mir ein passendes Gegenbeispiel zur der Frage, ob es
> > genügt, dass F' nullstellenfrei ist... Könntet ihr mir
> > diesbezüglich bitte auf die Sprünge helfen?
>  
>
> Spring mal auf die Expo.

>

Also f(z)=exp(z)=exp(x)*(cosy+isiny)=f'(z) ist nullstellenfrei. Aber doch auch injektiv, oder?

> FRED
>  >  
> > Danke!
>  


Bezug
                        
Bezug
Injektivität im Komplexen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mi 27.05.2015
Autor: fred97


> > > Seien G [mm]\subseteq \IC[/mm] ein konvexes Gebiet und F: [mm]G-->\IC[/mm]
> > > holomorph mit stetiger Ableitung F'.
> >
> >
> > Hä ? Die Ableitung einer holomorphen Funktion ist immer
> > stetig.
>  >  
> >
> > so lautet aber in der Tat die Aufgabenstellung...
>  >

> >
> > > Zeige: Ist ReF'
> > > nullstellenfrei, so ist F Injektiv.
> > > Genügt es zu verlangen, dass F' nullstellenfrei ist?
>  >  >  Hallo,
>  >  >  
> > > den eigentlichen Beweis habe ich gemeistert ;-) Allerdings
> > > fehlt mir ein passendes Gegenbeispiel zur der Frage, ob es
> > > genügt, dass F' nullstellenfrei ist... Könntet ihr mir
> > > diesbezüglich bitte auf die Sprünge helfen?
>  >  
> >
> > Spring mal auf die Expo.
>  >
>  
> Also f(z)=exp(z)=exp(x)*(cosy+isiny)=f'(z) ist
> nullstellenfrei. Aber doch auch injektiv, oder?

Nein. $exp(z+2k [mm] \pi [/mm] i)=exp(z)$  für alle $z [mm] \in \IC$ [/mm] und alle $k [mm] \in \IZ.$ [/mm]

FRED

>  
> > FRED
>  >  >  
> > > Danke!
> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]