matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikInjektivitätsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Mathematik" - Injektivitätsbeweis
Injektivitätsbeweis < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivitätsbeweis: Funktion Z x Z -> Z x Z x Z
Status: (Frage) beantwortet Status 
Datum: 19:33 Sa 11.02.2006
Autor: matth

Aufgabe
Die Funktion f: [mm] \IZ \times \IZ \to \IZ \times \IZ \times \IZ [/mm] sei gegeben durch
f(a,b) = (ab, ab+2a, (a²-2)b)
Zeige, dass f injektiv ist.

Ich schreibe nächste Woche meine Abschlussprüfung in Mathe, und bin beim Lernen auf diese Aufgabe gestoßen. Bis jetzt weiß ich nur, wie ich das für Abbildungen vom Typ Z x Z -> Z (oder Z -> Z x Z) mache, bin aber solchen Abbildungen wie oben noch nie begegnet und komme einfach nicht auf einen schlüssigen Beweis. Wie verfährt man denn bei dem Beweis? Betrachtet man die Gleichung komponentenweise? Ich bin für jede Hilfe dankbar!!

Schöne Grüße,
Matthias


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Injektivitätsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 06:14 So 12.02.2006
Autor: mathiash

Hallo und guten Morgen,

zu zeigen ist  doch, dass, wenn

[mm] (a,b)\neq [/mm] (c,d) gilt,   [mm] (a,b,c,d\in\IZ), [/mm]

dass dann auch

[mm] (ab,ab+2a,(a^2-2)b)\: \neq\: (cd,cd+2c,(c^2-2)d) [/mm]

gilt.

Also nehmen wir doch mal an, dass [mm] (a,b)\neq [/mm] (c,d) gilt (d.h
mindestens eine der Ungleichungen

[mm] a\neq c,\:\:\: b\neq d\:\:\: (\star) [/mm]

Wir nehmen einfach mal an, dass ab=cd, ab+2a=cd+2c gilt und muessen nun zeigen,
dass dann aber nicht

a^2b-2b = [mm] c^2d-2d\:\:\: (\star\star) [/mm]

gelten kann. Wenn uns dieser Nachweis gelingt, sind wir fertig, richtig ?

Aus den Annahmen [mm] ab=cd,\: [/mm] ab+2a=cd+2c folgt doch aber sofort auch a=c, nicht wahr ?

Dann muss  in [mm] (\star) [/mm] aber  [mm] b\neq [/mm] d  gelten, wenn die Tupel verschieden sein sollen.

Benutzen wir a=c in der Gleichung [mm] (\star\star) [/mm] - die wir ja widerlegen wollen-, so erhalten wir

[mm] (a^2-2)b=(a^2-2)d [/mm]

und dies impliziert sofort b=d ( die einzige Chance, dass es das nicht taete, waere, dass der Term [mm] a^2-2 [/mm]
gleich 0 ist, aber   solches a gibt es nicht in [mm] \IZ). [/mm]

Damit ist Injektivitaet gezeigt.

Viele Gruesse,

Mathias

Bezug
                
Bezug
Injektivitätsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:50 So 12.02.2006
Autor: matth

Vielen Dank !

Sieht gut aus, und dann auch noch so einfach... ;-)


Schönen Sonntag noch,

Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 38m 3. TS85
MaßTheo/Sigma-Algebra = P(X)
Status vor 22h 27m 8. Gonozal_IX
MaßTheo/Beweis Sigma-Algebra
Status vor 1d 21h 10m 6. hohohaha1234
USons/Größtmöglichstes Produkt
Status vor 2d 2. matux MR Agent
Mathematica/parametrischen Plot
Status vor 2d 3. Gonozal_IX
UAuslg/Log. Äquivl. vs. log. Schluss
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]