matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisInneres Produkt und Norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Inneres Produkt und Norm
Inneres Produkt und Norm < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inneres Produkt und Norm: Idee
Status: (Frage) beantwortet Status 
Datum: 12:31 So 07.10.2012
Autor: Omikron123

Aufgabe
(.,.): [mm] V->\IR [/mm] inneres Produkt auf Vektorraum V

=> [mm] (x,y)=\bruch{1}{4}(\parallel x+y\parallel^2-\parallel x-y\parallel^2) [/mm]

<=> [mm] \parallel x+y\parallel^2-\parallel x-y\parallel^2=2*\parallel x\parallel^2+2*\parallel y\parallel^2 [/mm]

Das obere ist die Polarisationsidentität, dass untere die Parallelogrammgleichung.

1.Frage: Welche Norm würde diese Äquivalenz nicht erfüllen?

2.Frage (zum Beweis): z.B (<=), wenn ich [mm] \parallel x+y\parallel^2-\parallel x-y\parallel^2 [/mm] oben einsetze erhalte ich [mm] (x,y)=\bruch{1}{2}(\parallel x\parallel^2+\parallel y\parallel^2) [/mm]

Darf ich nun [mm] \parallel x\paralell=\wurzel{(x,x)} [/mm] verwenden oder nicht?

Oder muss ich zeigen, wenn die Norm die re. Seite erfüllt, dann lässt sie sich durch ein inneres Produkt erzeugen, indem man zeigt, dass (,) tatsählich ein inneres Produkt ist?

        
Bezug
Inneres Produkt und Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Mo 08.10.2012
Autor: fred97


> (.,.): [mm]V->\IR[/mm] inneres Produkt auf Vektorraum V
>  
> => [mm](x,y)=\bruch{1}{4}(\parallel x+y\parallel^2-\parallel x-y\parallel^2)[/mm]
>  
> <=> [mm]\parallel x+y\parallel^2-\parallel x-y\parallel^2=2*\parallel x\parallel^2+2*\parallel y\parallel^2[/mm]


Das stimmt aber nicht.  Parallelogrammgleichung lautet so:

[mm]\parallel x+y\parallel^2+\parallel x-y\parallel^2=2*\parallel x\parallel^2+2*\parallel y\parallel^2[/mm]


>  
> Das obere ist die Polarisationsidentität, dass untere die
> Parallelogrammgleichung.
>  
> 1.Frage: Welche Norm würde diese Äquivalenz nicht
> erfüllen?
>  
> 2.Frage (zum Beweis): z.B (<=), wenn ich [mm]\parallel x+y\parallel^2-\parallel x-y\parallel^2[/mm]
> oben einsetze erhalte ich [mm](x,y)=\bruch{1}{2}(\parallel x\parallel^2+\parallel y\parallel^2)[/mm]
>  
> Darf ich nun [mm]\parallel x\paralell=\wurzel{(x,x)}[/mm] verwenden
> oder nicht?
>  
> Oder muss ich zeigen, wenn die Norm die re. Seite erfüllt,
> dann lässt sie sich durch ein inneres Produkt erzeugen,
> indem man zeigt, dass (,) tatsählich ein inneres Produkt
> ist?


Die Aufgabe ist sehr schlampig formuliert !

Zu tun ist folgendes:

1. Ist (*,*) ein inneres Produkt auf V, so gilt

$ [mm] (x,y)=\bruch{1}{4}(\parallel x+y\parallel^2-\parallel x-y\parallel^2) [/mm] $

und

$ [mm] \parallel x+y\parallel^2+\parallel x-y\parallel^2=2\cdot{}\parallel x\parallel^2+2\cdot{}\parallel y\parallel^2 [/mm] $

für alle x,y [mm] \in [/mm] V.

2. Ist V ein  normierter Raum (mit Norm ||*||) und gilt

    $ [mm] \parallel x+y\parallel^2+\parallel x-y\parallel^2=2\cdot{}\parallel x\parallel^2+2\cdot{}\parallel y\parallel^2 [/mm] $

für alle x,y [mm] \in [/mm] V,

so setze $ [mm] (x,y):=\bruch{1}{4}(\parallel x+y\parallel^2-\parallel x-y\parallel^2) [/mm] $   (x,y [mm] \in [/mm] V).

Jetzt mußt Du zeigen, dass dadurch ein inneres Produkt auf V def. wird.

FRED

    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]