matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral.Musterlösung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integral.Musterlösung
Integral.Musterlösung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral.Musterlösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Di 17.05.2011
Autor: Schmetterling99

Hallo, ich habe hier eine Musterlösung zu der Aufgabe:
Zeigen sie, dass das Integral [mm] \integral_{-\infty}^{\infty}{f(x) dx} [/mm]  e^(-x)^(2) existiert.
Nun haben die in der Musterlösung zuerst gezeigt, dass das Integral e^(-x) und [mm] e^x [/mm] einen Grenzwert besitzt.
Warum man sich den Grenzwert anschaut ist mir klar, aber warum von diesen beiden?
[mm] e^x*e^{-x} [/mm] ist ja nicht dasselbe wie e^(-x)^(2).
Was könnte die Idee dahinter sein??
Nur noch zur info die Lösung ist dann noch nicht zu ende.
Gruß

        
Bezug
Integral.Musterlösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Di 17.05.2011
Autor: angela.h.b.


> Hallo, ich habe hier eine Musterlösung zu der Aufgabe:
>  Zeigen sie, dass das Integral
> [mm]\integral_{-\infty}^{\infty}{f(x) dx}[/mm]  e^(-x)^(2)
> existiert.
>  Nun haben die in der Musterlösung zuerst gezeigt, dass
> das Integral e^(-x) und [mm]e^x[/mm] einen Grenzwert besitzt.
> Warum man sich den Grenzwert anschaut ist mir klar, aber
> warum von diesen beiden?
>  [mm]e^x*e^{-x}[/mm] ist ja nicht dasselbe wie e^(-x)^(2).
>  Was könnte die Idee dahinter sein??
>  Nur noch zur info die Lösung ist dann noch nicht zu ende.

Hallo,

tja, und wenn Du uns sagst, wie die Lösung weitergeht, dann steigt die Wahrscheinlichkeit dafür ganz immens, daß Dir einer sagen kann, warum  erstmal diese beiden GWe angeguckt wurden.

Und um welches Integral geht es? Das könntest Du auch nochmal richtig hinschreiben.

Gruß v. Angela





Bezug
                
Bezug
Integral.Musterlösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Di 17.05.2011
Autor: Schmetterling99

Tut mir Leid, aber irgendwie kann ich das nicht so schreiben:
[mm] \integral_{-\infty}^{\infty}{f(x) dx} (e(^-^x)^2) [/mm] (also e hoch -x und über dem -x ist hoch 2)
Dann hat man den Grenzwert des Integrals
[mm] \integral_{1}^{r}{f(x) dx} [/mm] e^-^x bestimmt. Lösung 1/e
Dann hat man den Grenzwert des Integrals
[mm] \integral_{-r}^{-1}{f(x) dx} e^x [/mm] berechnet. Lösung 1/e.
[mm] \integral_{-\infty}^{\infty}{f(x) dx} (e(^-^x)^2)= [/mm]
[mm] \limes_{r\rightarrow\infty}( \integral_{-r}^{-1}{f(x) dx} (e(^-^x)^2)+ [/mm]
( [mm] \integral_{-1}^{1}{f(x) dx} (e(^-^x)^2)+( \integral_{1}^{r}{f(x) dx} (e(^-^x)^2) \le [/mm]
[mm] \limes_{r\rightarrow\infty} [/mm] ( [mm] \integral_{-r}^{-1}{f(x) dx} e^x [/mm] +
( [mm] \integral_{-1}^{1}{f(x) dx} (e(^-^x)^2)+ [/mm]
( [mm] \integral_{1}^{r}{f(x) dx} [/mm] (e(^-^x) < [mm] \infty [/mm]

Bezug
                        
Bezug
Integral.Musterlösung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Di 17.05.2011
Autor: schachuzipus

Hallo Schmetterling,


das ist alles sehr sehr schlecht zu entziffern.

Exponenten mache mit dem Dach und schließe sie in geschweiften Klammern ein,

Was soll das [mm]f(x)[/mm] unterm Integral??

Ich bin sicher, dass die Aufgabe lautet, die Existenz von [mm]\int\limits_{-\infty}^{\infty}{e^{-x^2} \ dx} \ \leftarrow \ \text{klick}[/mm] nachzuweisen.

Ich erkläre dir mal die eine Abschätzung, die andere überlege dir analog.

Für [mm]x\ge 1[/mm] ist [mm]x^2\ge x[/mm] und da die Eponentialfunktion streng monoton steigend ist, auch [mm]e^{x^2}\ge e^x[/mm], also [mm]\frac{1}{e^{x^2}}\le\frac{1}{e^x}[/mm], dh. [mm]e^{-x^2}\le e^{-x}[/mm]

Also [mm]\int\limits_{1}^{\infty}{e^{-x^2} \ dx} \ \le \ \int\limits_{1}^{\infty}{e^{-x} \ dx}[/mm]

Und die Konvergenz des letzteren Integrals kann man leicht nachrechnen, damit hast du für den einen Teil eine konvergente Majorante.

Für [mm]-1\le x\le 1[/mm] ist [mm]e^{-x^2}[/mm] stetig, und stetige Funktionen nehmen auf kompakten Intervallen ihr Maximum an, also kannst du [mm]\int\limits_{-1}^1{e^{-x^2} \ dx}[/mm] entsprechend abschätzen, Es ist in jedem Falle endlich. Wenn du magst, kannst du das genauer abschätzen.

Nun überlege, wie die in der Lösung eine Majorante für [mm]\int\limits_{-\infty}^{-1}{e^{-x^2} \ dx}[/mm] gefunden haben.

Mache das wie oben ... [mm]x\le -1\Rightarrow\ldots[/mm]

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]