matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Integral
Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Di 12.06.2007
Autor: g_hub

Aufgabe
Sei [mm] B_r(0):={(x_1,x_2)\in \IR|x_1^2+x_2^2\ler^2} [/mm]
Berechnen Sie
[mm] \integral_{B_r(0)}{x_2^2\wurzel{r^2-x_1^2} d\lambda_2} [/mm]
Sei [mm] A\subset\IR^2 [/mm] die Menge, die von den parabeln [mm] y=x^2, x=y^2 [/mm] begrenzt wird. Berechnen Sie
[mm] \integral_{A}{x^2+yd}\lambda_2 [/mm]

kann mir bitte jmd bei diesen Aufgaben weiterhelfen, ich komme irgendwie nicht voran!

bin für jede hilfe/idee dankbar...

        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Di 12.06.2007
Autor: Gonozal_IX

Nen bissl spät, wenn du es morgen abgeben sollst, oder? -.-

Bezug
        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Di 12.06.2007
Autor: leduart

Hallo
für die erste Aufgabe rat ich dir zu Polarkoordinaten.
Für die 2. mal dir mal A auf, dann weisst du von wo bis wo du x und innerhalb dessen y integrieren willst, dann schreib das Integral als entsprechendes Doppelintegral
Gruss leduart

Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Di 12.06.2007
Autor: Gonozal_IX

Hi Leduart,

mal ne Frage dazu: Ich kann [mm] \lambda_2 [/mm] doch nicht einfach als Doppelintegral [mm]d\lambda_1 d\lambda_1[/mm] schreiben,

Wenns Borel-Maß wäre gehts problemlos, aber beim Lesbeque-Maß doch gerade nicht.....

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]