matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Integral e hoch x
Status: (Frage) beantwortet Status 
Datum: 11:24 So 31.05.2009
Autor: andi7987

Aufgabe
[mm] \integral_{}^{}{\bruch{e^{2x}}{1+e^{x}}dx} [/mm]

Wie löse ich folgenden Integral???

Keine Ahnung!

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 So 31.05.2009
Autor: fred97

Substituiere u= [mm] e^x [/mm]

FRED

Bezug
        
Bezug
Integral: oder ...
Status: (Antwort) fertig Status 
Datum: 11:37 So 31.05.2009
Autor: Loddar

Hallo Andi!


Es funktioniert auch die Substitution $u \ := \ [mm] 1+e^x$ [/mm] .
Ist aber auch gehupft wie gesprungen.


Gruß
Loddar


Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 So 31.05.2009
Autor: andi7987

Wenn ich [mm] 1+e^{x} [/mm] substituiere, dann komme ich auf folgendes Ergebnis:

u = 1 + [mm] e^{x} [/mm]

[mm] e^{x} [/mm] dx = du => dx = [mm] \bruch{du}{e^{x}} [/mm]

Dass dann eingesetzt ist folgendes:

[mm] \bruch{e^{2x}}{u}*\bruch{du}{e^{x}} [/mm]

Dann kann ich ja [mm] e^{x} [/mm] wegkürzen und haben dort stehen

[mm] \bruch{e^{2}}{u}*du [/mm]

Dann rücksubstituiert ist

[mm] \bruch{e^{2}}{1+e^{x}}*du [/mm]

So komme ich aber nicht auf das richtige Ergebnis, oder besser gefragt, was mache ich falsch? :-)


Bezug
                        
Bezug
Integral: Hinweis
Status: (Antwort) fertig Status 
Datum: 11:49 So 31.05.2009
Autor: Loddar

Hallo Andi!


> u = 1 + [mm]e^{x}[/mm]

Damit gilt auch: [mm] $e^x [/mm] \ = \ u-1$ .


> [mm]\bruch{e^{2x}}{u}*\bruch{du}{e^{x}}[/mm]
>  
> Dann kann ich ja [mm]e^{x}[/mm] wegkürzen

[ok] Genau. Und für das übrig gebliebene [mm] $e^x$ [/mm] im Zähler setzt Du nun $u-1_$ ein.


Gruß
Loddar


PS: Deine Kürzaktion sieht mir zudem nach mittelschwerem mathematischen Verbrechen aus. [eek]


Bezug
                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 So 31.05.2009
Autor: andi7987

Stimmt ich kürze ja e hoch x weg, dann bleibt noch immer ein e hoch x übrig! :-)

Jetzt hab ichs!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]