Integral/ Klausur Vorbereitung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:31 Di 05.07.2022 | Autor: | nkln |
Aufgabe | Berechnen Sie die folgenden Integrale
[mm] $a)\integral_{\delta K_1(0)}{\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))} dz}$
[/mm]
[mm] $b)\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}$
[/mm]
[mm] $c)\integral_{0}^{2\pi}{\frac{2cos(t)}{5+4cos(t)} dt}$ [/mm] |
Hallo,
hier sind meine Lösungen:
$a)$
Betrachtet man die Stelle $z=3$ stellt man fest, dass dort [mm] $f(z):=\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))}$ [/mm] nicht definiert ist, denn dort würde der Nenner null werden. Jedoch ist dich für unsere Integration unproblematisch, da wir lediglich über den Kreisrand/Kreisring [mm] $\delta K_1(0)$ [/mm] Integrieren und [mm] $3\not\in \delta K_1(0)$
[/mm]
Außerdem kann man feststellen, dass [mm] $\delta K_1(0) \subset K_2(0)$ [/mm] ist, also, dass der Kreisrand von Mittelpunkt null mit Radius eins in der Kreisscheibe vom Mittelpunkt null mit Radius zwei liegt. Die Kreisscheibe [mm] $K_2(0) \subset \mathbb{C}$ [/mm] ist offen und zugleich ein konvexes Gebiet.
Außerdem ist $f: [mm] K_2(0) \to \mathbb{C} [/mm] , z [mm] \mapsto \frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))}$ [/mm] holomorph, stetig und überall definiert auf [mm] $K_2(0)$. [/mm] Folglich gilt mit dem Cauchy-Integral Satz für konvexe Gebiete
[mm] $a)\integral_{\delta K_1(0)}{\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))} dz}=0$
[/mm]
$b)$
zunächst sei
[mm] $\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}= \integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2}) dz}$
[/mm]
man kann feststellen, dass isolierten Singularitäten bei $z=-2i$ als auch bei $z=0$ vorliegen. Es gilt, dass [mm] $\mathbb{C}$ [/mm] offen ist und [mm] $A:=\{0,-2i\}$ [/mm] in [mm] $\mathbb{C}$ [/mm] diskret ist. Außerdem ist
[mm] $f:\mathbb{C} \setminus [/mm] A [mm] \to \mathbb{C}, [/mm] z [mm] \mapsto exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2})$ [/mm] holomorph und [mm] $\Gamma= \delta K_4(0) [/mm] $ ist ein Zyklus in [mm] \mathbb{C}.
[/mm]
Dann gilt
[mm] $\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}=2\pi \summe_{a\in \{0,-2i\}} n_\Gamma(a)\cdot Res_a(f) [/mm] $
Da sowohl $0$ als auch $-2i$ innerhalb des Kreisrings [mm] $\delta K_4(0)$ [/mm] liegen, ist sowohl [mm] $n_\Gamma(0)=1$ [/mm] als auch $ [mm] n_\Gamma(-2i)=1$
[/mm]
Da $z=-2i$ ein einfacher pol ist ( da [mm] $\frac{1}{f}(-2i)=0$) [/mm] ,verwendet man
[mm] $Res_{-2i}(f)= \limes_{z\rightarrow-2i}((z-(-2i))\cdot [/mm] f(z)$
[mm] $=\limes_{z\rightarrow-2i}((z-(-2i))\cdot exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2})$
[/mm]
[mm] $=\limes_{z\rightarrow-2i}(z+2i)\cdot \frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2(z+2i)\cdot z^2}$
[/mm]
[mm] $=\limes_{z\rightarrow-2i}\frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2\cdot z^2}$
[/mm]
[mm] $=\frac{4i^2-4i+4i}{exp(\frac{4i^2}{2})\cdot 2\cdot 4i^2}$
[/mm]
[mm] $=\frac{e^2}{2}$
[/mm]
Da [mm] $z_1=0$ [/mm] ein doppelter Pol ist, verwendet man
[mm] $Res_{0}(f)= \limes_{z\rightarrow 0 }\frac{((z-0)^2f(z))^1}{(2-1)!}$
[/mm]
$= [mm] \limes_{z\rightarrow 0 }(z^2 \cdot \frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2(z+2i)\cdot z^2})^1$
[/mm]
Hier komme ich nicht weiter, bei der $c$ findet ich keinen Ansatz. Danke für eure Hilfe!!
|
|
|
|
> Berechnen Sie die folgenden Integrale
>
> [mm]a)\integral_{\delta K_1(0)}{\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))} dz}[/mm]
>
> [mm]b)\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}[/mm]
>
> [mm]c)\integral_{0}^{2\pi}{\frac{2cos(t)}{5+4cos(t)} dt}[/mm]
>
> Hallo,
>
> hier sind meine Lösungen:
>
> [mm]a)[/mm]
>
> Betrachtet man die Stelle [mm]z=3[/mm] stellt man fest, dass dort
> [mm]f(z):=\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))}[/mm] nicht
> definiert ist, denn dort würde der Nenner null werden.
> Jedoch ist dich für unsere Integration unproblematisch, da
> wir lediglich über den Kreisrand/Kreisring [mm]\delta K_1(0)[/mm]
> Integrieren und [mm]3\not\in \delta K_1(0)[/mm]
>
> Außerdem kann man feststellen, dass [mm]\delta K_1(0) \subset K_2(0)[/mm]
> ist, also, dass der Kreisrand von Mittelpunkt null mit
> Radius eins in der Kreisscheibe vom Mittelpunkt null mit
> Radius zwei liegt. Die Kreisscheibe [mm]K_2(0) \subset \mathbb{C}[/mm]
> ist offen und zugleich ein konvexes Gebiet.
>
> Außerdem ist [mm]f: K_2(0) \to \mathbb{C} , z \mapsto \frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))}[/mm]
> holomorph, stetig und überall definiert auf [mm]K_2(0)[/mm].
> Folglich gilt mit dem Cauchy-Integral Satz für konvexe
> Gebiete
>
> [mm]a)\integral_{\delta K_1(0)}{\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))} dz}=0[/mm]
>
>
> [mm]b)[/mm]
>
> zunächst sei
> [mm]\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}= \integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2}) dz}[/mm]
>
> man kann feststellen, dass isolierten Singularitäten bei
> [mm]z=-2i[/mm] als auch bei [mm]z=0[/mm] vorliegen. Es gilt, dass [mm]\mathbb{C}[/mm]
> offen ist und [mm]A:=\{0,-2i\}[/mm] in [mm]\mathbb{C}[/mm] diskret ist.
> Außerdem ist
>
> [mm]f:\mathbb{C} \setminus A \to \mathbb{C}, z \mapsto exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2})[/mm]
> holomorph und [mm]\Gamma= \delta K_4(0)[/mm] ist ein Zyklus in
> [mm]\mathbb{C}.[/mm]
>
> Dann gilt
>
> [mm]\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}=2\pi \red{i}\summe_{a\in \{0,-2i\}} n_\Gamma(a)\cdot Res_a(f)[/mm]
>
> Da sowohl [mm]0[/mm] als auch [mm]-2i[/mm] innerhalb des Kreisrings [mm]\delta K_4(0)[/mm]
> liegen, ist sowohl [mm]n_\Gamma(0)=1[/mm] als auch [mm]n_\Gamma(-2i)=1[/mm]
>
>
> Da [mm]z=-2i[/mm] ein einfacher pol ist
( da [mm]\frac{1}{f}(-2i)=0[/mm])
Das verstehe ich nicht ganz.
Ich würde so vorgehen:
[mm] \integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}=\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}) dz}+\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{z^2}) dz}
[/mm]
Im 2. Integral taucht in der Reihenentwicklung der e-Fkt. in Kombination mit [mm] \frac{1}{z^2} [/mm] z nur in geraden Potenzen auf, daher kann der Integrand keinen einfachen Pol enthalten, und das Residuum und mit ihm das Intergral hat den Wert 0.
(Wenns beliebt auch: [mm] exp(\frac{-z^2}{2})(\frac{1}{z^2})=(1-z^2/1!+z^4/2!-z^6/3!...)/z^2=1/z^2-1+z^2/2-z^4/6+...)
[/mm]
Für das 1. Integral gilt:
Die e-Funktion ist immer [mm] \ne [/mm] 0 und holomorph, daher hat der Integrand bei -2i eine einfache Polstelle (könnte man auch wieder wie oben in der Klammer als Reihenentwicklung aufschreiben).
Für die Berechnung des Residuums bei einer einfachen Polstelle a der Funktion f(z)=g(z)/h(z) gilt: Res [mm] f|_a [/mm] = [mm] \limes_{z\rightarrow a} [/mm] g(z)/h'(z), hier also
Res f|_(-2i) = [mm] \limes_{z\rightarrow -2i} exp(\frac{-z^2}{2})/2z=exp(2)/-4i
[/mm]
Somit hat das Integral den Wert [mm] 2\pi [/mm] i exp(2)/-4i= [mm] -\pi [/mm] exp(2)/2
> ,verwendet man
>
> [mm]Res_{-2i}(f)= \limes_{z\rightarrow-2i}((z-(-2i))\cdot f(z)[/mm]
>
> [mm]=\limes_{z\rightarrow-2i}((z-(-2i))\cdot exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2})[/mm]
>
> [mm]=\limes_{z\rightarrow-2i}(z+2i)\cdot \frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2(z+2i)\cdot z^2}[/mm]
>
> [mm]=\limes_{z\rightarrow-2i}\frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2\cdot z^2}[/mm]
>
> [mm]=\frac{4i^2-4i+4i}{exp(\frac{4i^2}{2})\cdot 2\cdot 4i^2}[/mm]
>
> [mm]=\frac{e^2}{2}[/mm]
>
> Da [mm]z_1=0[/mm] ein doppelter Pol ist, verwendet man
>
> [mm]Res_{0}(f)= \limes_{z\rightarrow 0 }\frac{((z-0)^2f(z))^1}{(2-1)!}[/mm]
>
> [mm]= \limes_{z\rightarrow 0 }(z^2 \cdot \frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2(z+2i)\cdot z^2})^1[/mm]
>
> Hier komme ich nicht weiter, bei der [mm]c[/mm] findet ich keinen
> Ansatz. Danke für eure Hilfe!!
>
>
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 07:28 Mi 06.07.2022 | Autor: | nkln |
> Berechnen Sie die folgenden Integrale
>
> [mm]a)\integral_{\delta K_1(0)}{\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))} dz}[/mm]
>
> [mm]b)\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}[/mm]
>
> [mm]c)\integral_{0}^{2\pi}{\frac{2cos(t)}{5+4cos(t)} dt}[/mm]
>
> Hallo,
>
> hier sind meine Lösungen:
>
> [mm]a)[/mm]
>
> Betrachtet man die Stelle [mm]z=3[/mm] stellt man fest, dass dort
> [mm]f(z):=\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))}[/mm] nicht
> definiert ist, denn dort würde der Nenner null werden.
> Jedoch ist dich für unsere Integration unproblematisch, da
> wir lediglich über den Kreisrand/Kreisring [mm]\delta K_1(0)[/mm]
> Integrieren und [mm]3\not\in \delta K_1(0)[/mm]
>
> Außerdem kann man feststellen, dass [mm]\delta K_1(0) \subset K_2(0)[/mm]
> ist, also, dass der Kreisrand von Mittelpunkt null mit
> Radius eins in der Kreisscheibe vom Mittelpunkt null mit
> Radius zwei liegt. Die Kreisscheibe [mm]K_2(0) \subset \mathbb{C}[/mm]
> ist offen und zugleich ein konvexes Gebiet.
>
> Außerdem ist [mm]f: K_2(0) \to \mathbb{C} , z \mapsto \frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))}[/mm]
> holomorph, stetig und überall definiert auf [mm]K_2(0)[/mm].
> Folglich gilt mit dem Cauchy-Integral Satz für konvexe
> Gebiete
>
> [mm]a)\integral_{\delta K_1(0)}{\frac{z^3+7sin(\cos(z))}{(z-3)exp(\sin(z))} dz}=0[/mm]
>
>
> [mm]b)[/mm]
>
> zunächst sei
> [mm]\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}= \integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2}) dz}[/mm]
>
> man kann feststellen, dass isolierten Singularitäten bei
> [mm]z=-2i[/mm] als auch bei [mm]z=0[/mm] vorliegen. Es gilt, dass [mm]\mathbb{C}[/mm]
> offen ist und [mm]A:=\{0,-2i\}[/mm] in [mm]\mathbb{C}[/mm] diskret ist.
> Außerdem ist
>
> [mm]f:\mathbb{C} \setminus A \to \mathbb{C}, z \mapsto exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2})[/mm]
> holomorph und [mm]\Gamma= \delta K_4(0)[/mm] ist ein Zyklus in
> [mm]\mathbb{C}.[/mm]
>
> Dann gilt
>
> [mm]\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}=2\pi \red{i}\summe_{a\in \{0,-2i\}} n_\Gamma(a)\cdot Res_a(f)[/mm]
>
> Da sowohl [mm]0[/mm] als auch [mm]-2i[/mm] innerhalb des Kreisrings [mm]\delta K_4(0)[/mm]
> liegen, ist sowohl [mm]n_\Gamma(0)=1[/mm] als auch [mm]n_\Gamma(-2i)=1[/mm]
>
>
> Da [mm]z=-2i[/mm] ein einfacher pol ist
( da [mm]\frac{1}{f}(-2i)=0[/mm])
Das verstehe ich nicht ganz.
Ich würde so vorgehen:
[mm] \integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}+\frac{1}{z^2}) dz}=\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{2z+4i}) dz}+\integral_{\delta K_4(0)}{exp(\frac{-z^2}{2})(\frac{1}{z^2}) dz}
[/mm]
Im 2. Integral taucht in der Reihenentwicklung der e-Fkt. in Kombination mit [mm] \frac{1}{z^2} [/mm] z nur in geraden Potenzen auf, daher kann der Integrand keinen einfachen Pol enthalten, und das Residuum und mit ihm das Intergral hat den Wert 0.
(Wenns beliebt auch: [mm] exp(\frac{-z^2}{2})(\frac{1}{z^2})=(1-z^2/1!+z^4/2!-z^6/3!...)/z^2=1/z^2-1+z^2/2-z^4/6+...)
[/mm]
aber ist $z=0$ keine kritische Stelle, da ja bei [mm] $\frac{1}{z^2}$ [/mm] durch null geteilt wird?
Für das 1. Integral gilt:
Die e-Funktion ist immer [mm] \ne [/mm] 0 und holomorph, daher hat der Integrand bei -2i eine einfache Polstelle (könnte man auch wieder wie oben in der Klammer als Reihenentwicklung aufschreiben).
Für die Berechnung des Residuums bei einer einfachen Polstelle a der Funktion f(z)=g(z)/h(z) gilt: Res [mm] f|_a [/mm] = [mm] \limes_{z\rightarrow a} [/mm] g(z)/h'(z), hier also
Res f|_(-2i) = [mm] \limes_{z\rightarrow -2i} exp(\frac{-z^2}{2})/2z=exp(2)/-4i
[/mm]
Somit hat das Integral den Wert [mm] 2\pi [/mm] i exp(2)/-4i= [mm] -\pi [/mm] exp(2)/2
> ,verwendet man
>
> [mm]Res_{-2i}(f)= \limes_{z\rightarrow-2i}((z-(-2i))\cdot f(z)[/mm]
>
> [mm]=\limes_{z\rightarrow-2i}((z-(-2i))\cdot exp(\frac{-z^2}{2})(\frac{1}{2(z+2i)}+\frac{1}{z^2})[/mm]
>
> [mm]=\limes_{z\rightarrow-2i}(z+2i)\cdot \frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2(z+2i)\cdot z^2}[/mm]
>
> [mm]=\limes_{z\rightarrow-2i}\frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2\cdot z^2}[/mm]
>
> [mm]=\frac{4i^2-4i+4i}{exp(\frac{4i^2}{2})\cdot 2\cdot 4i^2}[/mm]
>
> [mm]=\frac{e^2}{2}[/mm]
>
> Da [mm]z_1=0[/mm] ein doppelter Pol ist, verwendet man
>
> [mm]Res_{0}(f)= \limes_{z\rightarrow 0 }\frac{((z-0)^2f(z))^1}{(2-1)!}[/mm]
>
> [mm]= \limes_{z\rightarrow 0 }(z^2 \cdot \frac{z^2+2z+4i}{exp(\frac{z^2}{2})\cdot 2(z+2i)\cdot z^2})^1[/mm]
>
> Hier komme ich nicht weiter, bei der [mm]c[/mm] findet ich keinen
> Ansatz. Danke für eure Hilfe!!
>
>
>
danke dir für deine Hilfe, hast du noch einen Tipp bzw. Ansatz für die Teilaufgabe c?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:20 Mi 06.07.2022 | Autor: | fred97 |
> (Wenns beliebt auch:
> [mm]exp(\frac{-z^2}{2})(\frac{1}{z^2})=(1-z^2/1!+z^4/2!-z^6/3!...)/z^2=1/z^2-1+z^2/2-z^4/6+...)[/mm]
>
> aber ist [mm]z=0[/mm] keine kritische Stelle, da ja bei
> [mm]\frac{1}{z^2}[/mm] durch null geteilt wird?
>
>
Sei [mm] $g(z):=exp(\frac{-z^2}{2})(\frac{1}{z^2})$
[/mm]
Natürlich hat $g$ in $0$ einen Pol zweiter Ordnung. Es ist, wie mein Vorgänger schrieb:
[mm] $g(z)=\frac{1}{z^2}-1+ \frac{z^2}{2}- \frac{z^4}{6} [/mm] +...$
Die Reihe rechts konvergiert gleichmäßig auf $ [mm] \partial K_4(0)$, [/mm] also dürfen wir Integration und Summation vertauschen. Das Integral über jeden Summanden in der Reihe rechts ist aber $=0.$ Ist Dir das klar ?
Somit : $ [mm] \int_{ \partial K_4(0)}g(z) [/mm] dz=0.$
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:30 Mi 06.07.2022 | Autor: | nkln |
alles klar dank dir!!
hast du vielleicht einen Ansatz für die c?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:44 Mi 06.07.2022 | Autor: | fred97 |
> alles klar dank dir!!
>
> hast du vielleicht einen Ansatz für die c?
Satz 11.7 in
https://www.math.uni-hamburg.de/home/oberle/skripte/komplex/komplex11.pdf
sollte helfen .
|
|
|
|