matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegral, Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Integral, Konvergenz
Integral, Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral, Konvergenz: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 23:05 Mi 19.01.2005
Autor: Edi1982

Hi Leute,

Ich habe hier eine Aufgabe, bei der ich keine Ahnung habe, da ich nicht weis, wie man die Konvergenz bei einem integral untersucht.
Wäre für ein Paar Tipps sehr dankbar.

Zeigen Sie, dass das Integral

[mm] \integral_{a}^{b} {\bruch{sin(x)}{x} dx} [/mm]

konvergiert, aber nicht absolut konvergiert

        
Bezug
Integral, Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Mi 19.01.2005
Autor: andreas

hallo.

so wie die aufgabe dasteht ist sie falsch, da das ein integral über eine stetige funktion auf einem kompakten intervall $[a, b]$ ist und dieses integral konvergiert auch absolut. daher nehem ich an, dass du [m] \int_1^\infty \frac{\sin x}{x} \, \textrm{d}x [/m] meinst. um die konvergenz davon zu zeigen musst du einfach einmal parteiell integrieren und die beiden dann entstehenden summanden abschätzen.
um zu zeigen, dass das integral nicht absolut konvergiert kann man z.b. so vorgehen, dass man folgendermaßen abschätzt:


[m] \int_\pi^{(n+1)\pi} \left| \frac{\sin x}{x} \right| \, \textrm{d}x \geq \sum_{i=1}^n \frac{1}{(n+1)\pi} \int_{i\pi}^{(i+1)\pi} |\sin x| \, \textrm{d}x [/m]


warum folgt daraus die divergenz?

probiere das mal etwas auszuarbeiten. dann kannst du dich ja mit konkreten fragen wieder melden!


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]