matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral, Stammfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integral, Stammfunktion
Integral, Stammfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral, Stammfunktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 02:08 Fr 18.12.2009
Autor: Steirer

Aufgabe
Bestimmen Sie die folgenden unbestimmten Integrale:

[mm] \integral_{}^{}{ \wurzel{x^2+1}dx} [/mm] Hinweis: [mm] x=\bruch{1}{2}(t-\bruch{1}{t}) [/mm]

Also ich soll mit dem Hinweis substituieren.

dazu rechne ich mir noch dx aus [mm] dx=\bruch{1}{2}(1+\bruch{1}{t^2}) [/mm]

Das integrieren ist ja nicht so schwer jetzt frage ich mich nur wie ich auf eine Formel für t komme damit resubstituieren kann.
Kann mir jemand einen tipp geben? Ich hab schon alle möglichen Umformungen versucht stehe aber dabei an.

Danke
lg


        
Bezug
Integral, Stammfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 02:51 Fr 18.12.2009
Autor: Al-Chwarizmi


> Bestimmen Sie die folgenden unbestimmten Integrale:
>  
> [mm]\integral_{}^{}{ \wurzel{x^2+1}dx}[/mm] Hinweis:
> [mm]x=\bruch{1}{2}(t-\bruch{1}{t})[/mm]
>  Also ich soll mit dem Hinweis substituieren.
>  
> dazu rechne ich mir noch dx aus
> [mm]dx=\bruch{1}{2}(1+\bruch{1}{t^2})[/mm]      [notok]

hier fehlt rechts noch der Faktor $dt$ !
  

> Das integrieren ist ja nicht so schwer jetzt frage ich mich
> nur wie ich auf eine Formel für t komme damit
> resubstituieren kann.
>  Kann mir jemand einen tipp geben? Ich hab schon alle
> möglichen Umformungen versucht stehe aber dabei an.


Du hast ja die Substitutionsgleichung. Mit 2 multipliziert
sagt die:

       [mm] 2\,x=t-\frac{1}{t} [/mm]

oder weiter:

       [mm] t^2-2\,x\,t-1=0 [/mm]

und diese Gleichung kann man mittels p-q- oder a-b-c-
Formel leicht nach t auflösen. Natürlich muss man sich
dann über die Gültigkeit der beiden Lösungen Gedanken
machen.


LG     Al-Chw.

Bezug
                
Bezug
Integral, Stammfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:57 Fr 18.12.2009
Autor: Steirer


> > Bestimmen Sie die folgenden unbestimmten Integrale:
>  >  
> > [mm]\integral_{}^{}{ \wurzel{x^2+1}dx}[/mm] Hinweis:
> > [mm]x=\bruch{1}{2}(t-\bruch{1}{t})[/mm]
>  >  Also ich soll mit dem Hinweis substituieren.
>  >  
> > dazu rechne ich mir noch dx aus
> > [mm]dx=\bruch{1}{2}(1+\bruch{1}{t^2})[/mm]      [notok]
>  
> hier fehlt rechts noch der Faktor [mm]dt[/mm] !

ja hast natürlich recht ich hab ihn vergessen beim eintippen.

>    
> > Das integrieren ist ja nicht so schwer jetzt frage ich mich
> > nur wie ich auf eine Formel für t komme damit
> > resubstituieren kann.
>  >  Kann mir jemand einen tipp geben? Ich hab schon alle
> > möglichen Umformungen versucht stehe aber dabei an.
>  
>
> Du hast ja die Substitutionsgleichung. Mit 2 multipliziert
>  sagt die:
>  
> [mm]2\,x=t-\frac{1}{t}[/mm]
>  
> oder weiter:
>  
> [mm]t^2-2\,x\,t-1=0[/mm]
>  
> und diese Gleichung kann man mittels p-q- oder a-b-c-
>  Formel leicht nach t auflösen. Natürlich muss man sich
>  dann über die Gültigkeit der beiden Lösungen Gedanken
>  machen.

>

manchmal frage ich mich warum ich den wald vor lauter bäumen nicht seh.
Genau das ist mir gestern abend auch noch eingefallen.
  

>
> LG     Al-Chw.

danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]