matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral komplexer Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integral komplexer Funktion
Integral komplexer Funktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral komplexer Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:55 Di 27.05.2008
Autor: squee

Aufgabe
[mm] \integral_{}^{}{sin(z)/ z^{4}dz} [/mm]

Hallo,

ich habe ein Problem mit der Berechnung dieses Integrals bzw. ich stehe einfach auf dem Schlauch. Muss man hier die Cauchy-Integral-Formel anwenden und wenn ja, wie?
Ich habe es mit [mm] \integral_{0}^{2\pi}{f(z(t))z'(t) dt} [/mm] mit [mm] z(t)=e^{it} [/mm] versucht, bzw. durch stummes einsetzen ein klares Ergebnis erhofft, aber nichts.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Integral komplexer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Do 29.05.2008
Autor: fred97

Setze   f(z) = sinz und  benutze die Cauchysche Integralformel für die 3. Ableizung. Dann wird alles ganz einfach


FRED

Bezug
                
Bezug
Integral komplexer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 So 29.06.2008
Autor: sie-nuss

Hallo :)

Ich übe gerade für eine Klausur, und wollt mal gucken ob ich das verstanden habe:

Ich komme auf:

[mm] sin^{(3)}(0) [/mm] = [mm] \bruch{3!}{2\pi i}\integral_{ }^{ }{\bruch{sin(z)}{z^4} dz} [/mm]

[mm] \Rightarrow [/mm] Das Integral ist gleich 0

Stimmt das?

Liebe Grüße!

sie-nuss


Bezug
                        
Bezug
Integral komplexer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 So 29.06.2008
Autor: Somebody


> Hallo :)
>  
> Ich übe gerade für eine Klausur, und wollt mal gucken ob
> ich das verstanden habe:
>  
> Ich komme auf:
>  
> [mm]sin^{(3)}(0)[/mm] = [mm]\bruch{3!}{2\pi i}\integral_{ }^{ }{\bruch{sin(z)}{z^4} dz}[/mm]
>  
> [mm]\Rightarrow[/mm] Das Integral ist gleich 0
>  
> Stimmt das?

Eher nicht, denn die dritte Ableitung des [mm] $\sin(z)$ [/mm] ist doch [mm] $-\cos(z)$ [/mm] und [mm] $-\cos(0)$ [/mm] ist nicht $0$ sondern $-1$.

Bezug
                                
Bezug
Integral komplexer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:18 Mo 30.06.2008
Autor: sie-nuss

...ups ich hab nur zwei mal abgeleitet :-) Kam mir auch irgendwie komisch vor, dass 0 rauskommt
also dann komm ich auf [mm] -\bruch{\pi i}{2} [/mm]

stimmt DAS? ;-)

Grüße!

sie-nuss



Bezug
                                        
Bezug
Integral komplexer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Mo 30.06.2008
Autor: fred97

Nein !   Was ist 3 !   ?

FRED

Bezug
                                                
Bezug
Integral komplexer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:38 Mo 30.06.2008
Autor: sie-nuss

ähem... ups!

ich meinte [mm] -\bruch{\pi i}{3} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]