matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegral lösen VZ Problem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integral lösen VZ Problem
Integral lösen VZ Problem < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral lösen VZ Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:52 So 03.08.2008
Autor: cmg

Aufgabe
[mm] \integral_{2}^{3} [/mm] x / (x-1) [mm] \, [/mm] dx

Ich versuche mich mal:

[mm] \integral_{2}^{3} [/mm]  (x-1+1) / (x-1) [mm] \,, [/mm]
[mm] \integral_{2}^{3} [/mm]  (x-1) / (x-1) + 1 / (x-1) [mm] \, [/mm]
[mm] \integral_{2}^{3} [/mm]  1 + 1 / (x-1) [mm] \, [/mm]
x + ln(x-1) in den Grenzen 2 bis 3, also 3+ln(2) - (2 + ln(1)) = 1,69.

Allerdings kommt mit dem Rechner aus: x - ln(x-1) und ich weiss nicht wo das Minus herkommt. Ich habe eine ähnliche Aufgabe noch mal. da habe ich exakt den selben Fehler.

Anscheinend habe ich ein Problem (x-1+1) / (x-1) korrekt umzuformen. Ich dachte das VZ des Zählers bestimmt Minus/Plus, also habe ich doch hier (x-1) / (x-1) und dann noch +1/(x-1), wo in der Rechnung wird dieses Plus zum Minus und vor allem, warum? :)

        
Bezug
Integral lösen VZ Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 So 03.08.2008
Autor: Somebody


> [mm]\integral_{2}^{3}[/mm] x / (x-1) [mm]\,[/mm] dx
>  Ich versuche mich mal:
>  
> [mm]\integral_{2}^{3}[/mm]  (x-1+1) / (x-1) [mm]\,,[/mm]
>  [mm]\integral_{2}^{3}[/mm]  (x-1) / (x-1) + 1 / (x-1) [mm]\,[/mm]
>  [mm]\integral_{2}^{3}[/mm]  1 + 1 / (x-1) [mm]\,[/mm]
>  x + ln(x-1) in den Grenzen 2 bis 3, also 3+ln(2) - (2 +
> ln(1)) = 1,69.

[ok] Etwas eigenartig geschrieben, aber im Prinzip richtig.

> Allerdings kommt mit dem Rechner aus: x - ln(x-1)

Diese kryptische Stelle Deiner Frage solltest Du etwas breiter ausformulieren. Ist dies eine Stammfunktion, die Dein Rechner für den Integranden [mm] $\frac{x}{x-1}$ [/mm] ausgegeben hat? - Wenn ja, wäre dies falsch.

> und ich weiss nicht wo das Minus herkommt.

Ich auch nicht, [mm] $x-\ln(x-1)$ [/mm] ist eindeutig keine Stammfunktion von [mm] $\frac{x}{x-1}$. [/mm]

> Ich habe eine ähnliche
> Aufgabe noch mal. da habe ich exakt den selben Fehler.
>  
> Anscheinend habe ich ein Problem (x-1+1) / (x-1) korrekt
> umzuformen. Ich dachte das VZ des Zählers bestimmt
> Minus/Plus,

Stimmt.

> also habe ich doch hier $(x-1) / (x-1)$ und dann
> noch [mm] $\red{+}1/(x-1)$, [/mm]

[ok]

> wo in der Rechnung wird dieses Plus zum  Minus und vor allem, warum? :)

Wie? wo? in welcher Rechnung wird dieses Plus zum Minus? - In der obigen Berechnung des Integrals [mm] $\int_2^3\frac{x}{x-1}\; dx=\big[x+\ln(x-1)\big]_{x=2}^3$ [/mm] steht jedenfalls noch ein Plus. Und dies ist auch richtig so.


Bezug
                
Bezug
Integral lösen VZ Problem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 So 03.08.2008
Autor: cmg

Okay, danke.
bin glaube ich mit dem Aufgaben durcheinander gekommen ;-)
Eine bessere Antwort hätte es ja nicht geben können ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]