matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesIntegral mit Diracstoß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Integral mit Diracstoß
Integral mit Diracstoß < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mit Diracstoß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 So 26.11.2006
Autor: Pippi-Langstrumpf

Halli hallöle!

Ich weiß nicht so ganz, wo diese Frage am besten aufgehoben ist, eigentlich kommt sie aus der Technik...

Ich möchte folgendes Integral berechnen:

[mm] \integral_{-\infty}^{\infty}3\delta(\tau)e^{-i\omega\tau}d\tau [/mm]

wobei [mm] \delta(\tau) [/mm] der Dirac-Stoß ist.

Angeblich soll da 3 rauskommen, ich weiß nur nicht so ganz, wie man darauf kommt. Könnte mir da jemand helfen?

Viele liebe Grüße aus der Villa Kunterbunt
wünscht
Pippilotta

        
Bezug
Integral mit Diracstoß: Tipp
Status: (Antwort) fertig Status 
Datum: 13:43 So 26.11.2006
Autor: TorstenSBHH

Hallo Pippi.

Allgemein gilt
[mm] \integral_{-\infty}^{\infty} [/mm] f(x) [mm] \delta(x-x_{0})dx [/mm] = [mm] f(x_{0}). [/mm]
Mußt Du hier nur einsetzen und fertig"!
Gruß von Torsten

Bezug
                
Bezug
Integral mit Diracstoß: Beweis?
Status: (Frage) überfällig Status 
Datum: 15:07 So 26.11.2006
Autor: Pippi-Langstrumpf

Halli hallöle Torsten!

> Allgemein gilt
>  [mm]\integral_{-\infty}^{\infty}[/mm] f(x) [mm]\delta(x-x_{0})dx[/mm] =
> [mm]f(x_{0}).[/mm]
>  Mußt Du hier nur einsetzen und fertig"!

Vielen Dank für den Tipp. :-) Hab' das mittlerweile auch []hier gefunden. Aber weißt du vielleicht, wieso das gilt? Das müsste man doch irgendwie beweisen können.

Viele bunte Grüßeeeeee von
Pippilotta

Bezug
                        
Bezug
Integral mit Diracstoß: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 So 26.11.2006
Autor: Martin243

Hallo,

du kannst mal versuchen, die Stammfunktion mit partieller Integration zu bestimmen und dann die Grenzwerte für [mm] $x\rightarrow\infty$ [/mm] und [mm] $x\rightarrow-\infty$ [/mm] zu bilden. Dann solltest du es sehen.

OK, Distribution, Obiges geht nicht!

Gruß
Martin

Bezug
                                
Bezug
Integral mit Diracstoß: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 21:46 So 26.11.2006
Autor: TorstenSBHH

Hallo.

Das mit der Stammfunktion geht hier nicht. [mm] \delta(x) [/mm] ist gar keine Funktion im eigentlichen Sinne und das Integral als solches ist nur eine Schreibweise, ein Vereinbarung, darunter das zu verstehen, was ich heut mittag geschrieben habe, nämlich
[mm] \integral_{-\infty}^{\infty} f(x)\delta(x-x_{0})dx [/mm] = [mm] f(x_{0}). [/mm]
[mm] \delta(x) [/mm] wird gerne so beschrieben: Eine Funktion, die überall 0 ist, nur bei x=0  ist sie [mm] \infty. [/mm] Unter einem normalen Integralzeichen über [mm] \IR [/mm] würde eine solche Funktion genauso wirken wie die Nullfunktion. Aber wie gesagt, so ist es nicht zu verstehen.
Das Ganze soll ja einen punktförmigen Impuls beschreiben, einen Stoß, ein Aufblitzen oder sonst was, das eben in beliebig kurzer Zeit stattfindet. In Wirklichkeit würde man so was lieber beschreiben mit einer Art Buckelfunktion, eine Abbildung, die bei Null ihr Maximum hat und dann möglichst schnell auf Null runterfällt. Je "schneller" dieses Ereignis ist, desto schmaller der Buckel, da aber die Wirkung gleich bleiben soll, sollte die Fläche unter dem Buckel (was ein Maß für die Wirkung ist) auch gleich bleiben, und das heißt, daß der schmalere Buckel auch höher sein muß. Wenn Du das immer weiter treibst, kommst Du im grenzübergang zu dieser [mm] \delta-Funktion. [/mm]
Wenn Du nun das Integral mit dieser Buckelfunktion bildest statt mit dem [mm] \delta, [/mm] dann ist's ein normales Integral, und wenn Du dann diesen Grenzübergang durchführst, kommt f(0)  raus.
Wie das jetzt genau geht, ist jetzt zu aufwendig, um's hier in ein paar Zeilen zu beschreiben, das steht doch bestimmt in einem Deiner vielen Bücher in der Kunterbunt-Bibliothek ;-)
Gruß von Torsten

Bezug
                        
Bezug
Integral mit Diracstoß: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 28.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]