matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesIntegral und Abl. vertauschen?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Integral und Abl. vertauschen?
Integral und Abl. vertauschen? < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral und Abl. vertauschen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Mo 21.01.2013
Autor: EvelynSnowley2311

Huhu,

ich stöber grade durchs Internet und finde nicht wirklich ne passende Lösung für folgendes... Wann kann ich eine Ableitung und ein Integral vertauschen? Also welche Voraussetzungen muss ich an f haben?

Es geht um den eindimensionalen Fall

[mm] \integral_{a}^{b} \bruch{d}{dx} [/mm] f(x) dx ??=??  [mm] \bruch{d}{dx} \integral_{a}^{b}{f(x) dx} [/mm]

aber auch


[mm] \integral_{a}^{b} \bruch{d^n}{dx^n} [/mm] f(x) dx ??=??  [mm] \bruch{d^n}{dx^n} \integral_{a}^{b}{f(x) dx} [/mm]

wobei zweiteres für die n-te Ableitung steht.

        
Bezug
Integral und Abl. vertauschen?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Mo 21.01.2013
Autor: notinX

Hallo,

> Huhu,
>  
> ich stöber grade durchs Internet und finde nicht wirklich
> ne passende Lösung für folgendes... Wann kann ich eine
> Ableitung und ein Integral vertauschen? Also welche
> Voraussetzungen muss ich an f haben?
>  
> Es geht um den eindimensionalen Fall
>  
> [mm]\integral_{a}^{b} \bruch{d}{dx}[/mm] f(x) dx ??=??  
> [mm]\bruch{d}{dx} \integral_{a}^{b}{f(x) dx}[/mm]

ich schätze das wird (bis auf ein paar pathologische Fälle) nie gelten. Denn das bestimmte Integral ist ausgewertet einfach ein Skalar und dessen Ableitung ist 0. Die Rechte Seite der Gleichung ist also immer =0. Für die linke Seite muss das nicht zwingend gelten.

>  
> aber auch
>
>
> [mm]\integral_{a}^{b} \bruch{d^n}{dx^n}[/mm] f(x) dx ??=??  
> [mm]\bruch{d^n}{dx^n} \integral_{a}^{b}{f(x) dx}[/mm]
>  
> wobei zweiteres für die n-te Ableitung steht.

Da ich kein Mathematiker bin und mich nicht zu weit aus dem Fenster lehnen möchte, lasse ich mal halboffen.

Gruß,

notinX

Bezug
                
Bezug
Integral und Abl. vertauschen?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Mo 21.01.2013
Autor: Helbig


> Hallo,
>  
> > Huhu,
>  >  
> > ich stöber grade durchs Internet und finde nicht wirklich
> > ne passende Lösung für folgendes... Wann kann ich eine
> > Ableitung und ein Integral vertauschen? Also welche
> > Voraussetzungen muss ich an f haben?
>  >  
> > Es geht um den eindimensionalen Fall
>  >  
> > [mm]\integral_{a}^{b} \bruch{d}{dx}[/mm] f(x) dx ??=??  
> > [mm]\bruch{d}{dx} \integral_{a}^{b}{f(x) dx}[/mm]
>  
> ich schätze das wird (bis auf ein paar pathologische
> Fälle) nie gelten. Denn das bestimmte Integral ist
> ausgewertet einfach ein Skalar und dessen Ableitung ist 0.
> Die Rechte Seite der Gleichung ist also immer =0. Für die
> linke Seite muss das nicht zwingend gelten.
>  
> >  

> > aber auch
> >
> >
> > [mm]\integral_{a}^{b} \bruch{d^n}{dx^n}[/mm] f(x) dx ??=??  
> > [mm]\bruch{d^n}{dx^n} \integral_{a}^{b}{f(x) dx}[/mm]
>  >  
> > wobei zweiteres für die n-te Ableitung steht.
>
> Da ich kein Mathematiker bin und mich nicht zu weit aus dem
> Fenster lehnen möchte, lasse ich mal halboffen.

Da gilt genau dasselbe wie für [mm] $n=1\,.$ [/mm]

Der zweite Teil ist genauso eindimensional wie der erste. [mm] $d^n \over dx^n$ [/mm] ist schlicht die n-te Ableitung.

Gruß,
Wolfgang

Bezug
                        
Bezug
Integral und Abl. vertauschen?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Mo 21.01.2013
Autor: EvelynSnowley2311

Oki ich danke euch ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]