matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegral von Hyperbolicus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Integral von Hyperbolicus
Integral von Hyperbolicus < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von Hyperbolicus: integral cosh^2 und sinh^2
Status: (Frage) beantwortet Status 
Datum: 15:28 Fr 22.08.2008
Autor: Linda89

Aufgabe 1
[mm] $\int \cosh^2(x)dx$ [/mm]  

Aufgabe 2
[mm] $\int \sinh^2(x)dx [/mm] $

Hallo,

ich mache mir gerade eine Zusammenfassung von der Vorlesung Modellierung und ich komme beim ausrechnen dieses Integrals auf ganz viele verschiedene Lösungen. Bitte helft mir!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral von Hyperbolicus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 Fr 22.08.2008
Autor: Braunstein

Hallo,
du hast Recht. Es gibt viele Methoden, die dieses Integral lösen (sofern du mit Lösungen die Lösungswege meinst). Eine interessante Methode ist folgende:

[mm] cosh(x)=\bruch{e^{x}+e^{-x}}{2} [/mm]
[mm] sinh(x)=\bruch{e^{x}-e^{-x}}{2} [/mm]

Wichtig ist, dass du cosh(x) NICHT mit cosx (bei cosx muss man in der Euler-Darstellung ein j [komplexe Zahlen] hinzufügen).

Weiters:
-> [mm] (e^{x})^2 [/mm] = [mm] e^{2x} [/mm] = [mm] e^{x}*e^{x} [/mm] = [mm] e^{x+x} [/mm]
-> [mm] (a+b)^{2}=a^{2}+2ab+b^{2} [/mm]

Danach noch passend substituieren, und 'voiles': fertig!


PS: Du kannst cosh(x) oder sinh(x) auch in Potenzreihen umwandeln. Auch ein interessanter Lösungsweg, aber sehr mühsam, denn Approximationen sind notwendig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]