matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegral zu verketteter e-Funk
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Integral zu verketteter e-Funk
Integral zu verketteter e-Funk < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral zu verketteter e-Funk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Di 24.10.2023
Autor: hase-hh

Aufgabe
Die Funktion w(t) = [mm] 6*e^{-\bruch{1}{30}*(t-4)^2} [/mm]

soll im Intervall [0;10] integriert werden.

Dabei gibt w(t) die Wachstumsrate eines Baumes in Jahrzehnten an.

Die Anfangshöhe des Baumes ist 0,5 m.

Wie hoch ist der Baum nach 100 Jahren?

Moin Moin,

ich habe eine Frage zur Integration einer verketteten e-Funktion.

Zum Ergebnis der Integralrechnung muss ich am Ende noch 0,5 m addieren. Wir hier aber vernachlässigt.


W(t) = [mm] \integral_{0}^{10}{(6*e^{-\bruch{1}{30}*(t-4)^2}) dt} [/mm]

=>  W(t) = [mm] 6*\integral_{0}^{10}{(e^{-\bruch{1}{30}*(t-4)^2}) dt} [/mm]


Da es sich um eine verkettete Funktion handelt

t - >  [mm] -\bruch{1}{30}*(t-4)^2 [/mm] = i(t)  - >  [mm] e^i [/mm] = a(i(t))


i ' = [mm] -\bruch{1}{30}*2*(t-4) [/mm]        


W(t) = [mm] A(i(t))*\bruch{1}{i '} [/mm]           um die innere Ableitung "auszugleichen"


W(t) = [mm] 6*e^{-\bruch{1}{30}*(t-4)^2}*\bruch{1}{-\bruch{1}{30}*2*(t-4)} [/mm]        

Dies führt leider nicht zu einem richtigen Ergebnis, da eine negative Baumhöhe dabei herauskommt:

W(10) - W(0) = -4,52-13,2 = -17,72 m  


Wo ist der Fehler???


Danke & Gruß!







        
Bezug
Integral zu verketteter e-Funk: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Di 24.10.2023
Autor: statler

Guten Abend!

> Die Funktion w(t) = [mm]6*e^{-\bruch{1}{30}*(t-4)^2}[/mm]
>
> soll im Intervall [0;10] integriert werden.
>
> Dabei gibt w(t) die Wachstumsrate eines Baumes in
> Jahrzehnten an.
>
> Die Anfangshöhe des Baumes ist 0,5 m.
>
> Wie hoch ist der Baum nach 100 Jahren?
>  Moin Moin,
>  
> ich habe eine Frage zur Integration einer verketteten
> e-Funktion.
>
> Zum Ergebnis der Integralrechnung muss ich am Ende noch 0,5
> m addieren. Wir hier aber vernachlässigt.
>  
>
> W(t) = [mm]\integral_{0}^{10}{(6*e^{-\bruch{1}{30}*(t-4)^2}) dt}[/mm]

Das ist nicht W(t), sondern W(10) - W(0).

>  
> =>  W(t) =

> [mm]6*\integral_{0}^{10}{(e^{-\bruch{1}{30}*(t-4)^2}) dt}[/mm]
>  
>
> Da es sich um eine verkettete Funktion handelt
>
> t - >  [mm]-\bruch{1}{30}*(t-4)^2[/mm] = i(t)  - >  [mm]e^i[/mm] = a(i(t))

>  
>
> i ' = [mm]-\bruch{1}{30}*2*(t-4)[/mm]        
>
>
> W(t) = [mm]A(i(t))*\bruch{1}{i '}[/mm]           um die innere
> Ableitung "auszugleichen"
>  
>
> W(t) =
> [mm]6*e^{-\bruch{1}{30}*(t-4)^2}*\bruch{1}{-\bruch{1}{30}*2*(t-4)}[/mm]
>        
>
> Dies führt leider nicht zu einem richtigen Ergebnis, da
> eine negative Baumhöhe dabei herauskommt:
>  
> W(10) - W(0) = -4,52-13,2 = -17,72 m  
>
>
> Wo ist der Fehler???

Der Fehler liegt darin, daß du annimmst, daß eine Stammfunktion von [mm] e^{f(x)} [/mm] durch [mm] (1/f'(x))*e^{f(x)} [/mm] gegeben ist. Das stimmt aber nicht, wie du durch eine Probe mit der Produktregel sofort erkennst.

Jetzt könntest du mit partieller Integration oder Substitution herumprobieren, aber ...

... wenn du w(t) genau analysierst, erkennst du vielleicht eine strukturelle Ähnlichkeit mit der Dichte der Normalverteilung.

Soweit erstmal
Dieter

Nachtrag: Ich komme auf eine Höhe von 45,93 + 0,5 = 46,43 [m].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]