Integralaufgabe < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:49 So 25.10.2009 | Autor: | stowoda |
Aufgabe | Sei $C$ die durch [mm] \overrightarrow{r}:[0,\frac{\pi}{2}]\to\IR^2, \overrightarrow{r}(u)=(cos^3(u), sin^3(u))^T [/mm] parametrisierte Kurve.
Die Bogenlängenfunktion [mm] s:[0,\frac{\pi}{2}]\to\IR [/mm] wird definiert durch
[mm] s(t):=L(\overrightarrow{r}|_{[0,t]}), [/mm] 0 [mm] \le [/mm] t [mm] \le \frac{\pi}{2},
[/mm]
wobei [mm] \overrightarrow{r}|_{[0,t]} [/mm] die Kurve sei, die durch die Einschränkung von [mm] \overrightarrow{r} [/mm] auf [0,t] gegeben ist. Berechnen Sie s(t) und zeigen Sie, dass [mm] s:[0,\frac{\pi}{2}]\to [/mm] [0,L(C)] eine Parametertransformation ist (also eine stetig differenzierbare Bijektion mit positiver Ableitung). Ist [mm] s^{-1} [/mm] die Umkehrfunktion, so ist dann [mm] \overrightarrow{r}\circ s^{-1} [/mm] ebenfalls eine Parametrisierung von C. Bestimmen Sie diese Parameterdarstellung der Kurve ("Parametrisierung über die Bogenlänge"). |
Hallo,
habe leider keine Idee wie ich mit dieser Aufgabe verfahren soll.
Ich habe auch keine Ahnung was man hierbei lernen sollte.
Könnt Ihr mir Tipps geben wie ich anfangen sollte?
Die einzigen Vermutungen die mir einfallen wären diese:
[mm] s(t):=L(\overrightarrow{r}|_{[0,t]})=\integral_{0}^{t}{\parallel \overrightarrow{r}'(t) \parallel dt} =\integral_{0}^{t}{ \sqrt{(-3cos^2(t)sin(t))^2+(3sin^2(t)cos(t))^2}}dt [/mm] = [mm] \integral_{0}^{\frac{\pi}{2}}{3cos(t)sin(t)}dt [/mm] = [mm] \frac{3}{2}
[/mm]
Damit hätt eich wohl s(t).
Mit der Parametertransformation komme ich nicht klar. Ich verstehe nicht was das bedeutet..
Grüße
stowoda
|
|
|
|
Hallo,
> Sei [mm]C[/mm] die durch
> [mm]\overrightarrow{r}:[0,\frac{\pi}{2}]\to\IR^2, \overrightarrow{r}(u)=(cos^3(u), sin^3(u))^T[/mm]
> parametrisierte Kurve.
> Die Bogenlängenfunktion [mm]s:[0,\frac{\pi}{2}]\to\IR[/mm] wird
> definiert durch
> [mm]s(t):=L(\overrightarrow{r}|_{[0,t]}),[/mm] 0 [mm]\le[/mm] t [mm]\le \frac{\pi}{2},[/mm]
>
> wobei [mm]\overrightarrow{r}|_{[0,t]}[/mm] die Kurve sei, die durch
> die Einschränkung von [mm]\overrightarrow{r}[/mm] auf [0,t] gegeben
> ist. Berechnen Sie s(t) und zeigen Sie, dass
> [mm]s:[0,\frac{\pi}{2}]\to[/mm] [0,L(C)] eine
> Parametertransformation ist (also eine stetig
> differenzierbare Bijektion mit positiver Ableitung). Ist
> [mm]s^{-1}[/mm] die Umkehrfunktion, so ist dann
> [mm]\overrightarrow{r}\circ s^{-1}[/mm] ebenfalls eine
> Parametrisierung von C. Bestimmen Sie diese
> Parameterdarstellung der Kurve ("Parametrisierung über die
> Bogenlänge").
> Hallo,
>
> habe leider keine Idee wie ich mit dieser Aufgabe verfahren
> soll.
> Ich habe auch keine Ahnung was man hierbei lernen sollte.
> Könnt Ihr mir Tipps geben wie ich anfangen sollte?
>
>
> Die einzigen Vermutungen die mir einfallen wären diese:
>
> [mm]s(t):=L(\overrightarrow{r}|_{[0,t]})=\integral_{0}^{t}{\parallel \overrightarrow{r}'(t) \parallel dt} =\integral_{0}^{t}{ \sqrt{(-3cos^2(t)sin(t))^2+(3sin^2(t)cos(t))^2}}dt[/mm]
> = [mm]\integral_{0}^{\frac{\pi}{2}}{3cos(t)sin(t)}dt[/mm] =
> [mm]\frac{3}{2}[/mm]
>
> Damit hätt eich wohl s(t).
>
Nicht ganz: du sollst ja $s$ in abhaengigkeit von $t$ berechnen. Also
[math]s(t):=L(\overrightarrow{r}|_{[0,t]})=\integral_{0}^{t}{\parallel \overrightarrow{r}'(\tau) \parallel d\tau}[/math]
aber mit variablem $t$. Dann zeigst du, wie es im hinweis steht, dass s eine parameter-trafo ist und bestimmst die umkehrfunktion. Dann kannst du die bogenlaengen-parametrisierung der kurve explizit bestimmen. Solche parametrisierungen sind sehr wichtig, weil man mit ihnen recht leicht rechnen kann. Oft begnuegt man sich aber damit zu wissen, dass zu jeder regulaeren kurve so eine parametrisierung existiert. Hier sollst du mal eine konkret bestimmen.
gruss
Matthias
|
|
|
|