matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegralberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Integralberechnung
Integralberechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 12:15 Mi 21.09.2005
Autor: stevarino

Hallo

Hab folgendes Problem
[mm] \integral_{0}^{1} [/mm] { [mm] \wurzel[]{1+(3x^2)^2} [/mm] dx}

Wenn ich substituiere hab ich keine Probleme die richtige Lösung rauszukriegen.

jetzt wollt ich es aber direkt ausrechenen....

mit   [mm] \integral_{}^{} [/mm] { [mm] \wurzel[]{x^2+1} [/mm] dx}= [mm] \bruch{1}{2}*(x*\wurzel[]{x^2+1}+arsinhx) [/mm]

[mm] \integral_{0}^{1} [/mm] { [mm] \wurzel[]{1+(3x^2)^2} dx}=\bruch{1}{2}*((3x^2)*\wurzel[]{(3x^2)^2+1}+arsinhx) [/mm]

und jetzt muss ich ja noch das ganze durch die innere Ableitung dividieren also durch 6x
[mm] =\bruch{1}{2*6x}*((3x^2)*\wurzel[]{(3x^2)^2+1}+arsinhx) [/mm]

den arsinhx wandel ich noch um .....
[mm] =\bruch{1}{2*6x}*((3x^2)*\wurzel[]{(3x^2)^2+1}+ln(x+\wurzel[]{x^2+1})) [/mm]

jetzt noch obere und untere Grenze einsetzten und es kommt 0.864... =falsch raus  

wo hab ich da was falsch gemachtrichtig wäre 1.8842

Danke

Stevo



        
Bezug
Integralberechnung: falsches Vorgehen
Status: (Antwort) fertig Status 
Datum: 12:35 Mi 21.09.2005
Autor: Julius

Hallo stevarino!

Um es auf den Punkt zu bringen: Das ganze Vorgehen ist zum Scheitern verurteilt.

Zwar lautet die Substitutionsregel (vereinfachte Darstellung)

[mm] $\int\limits [/mm] f(g(x)) [mm] \cdot g'(x)\, [/mm] dx = [mm] \int\limits f(x)\, [/mm] dx = F(x) + C$,

aber daraus lässt sich keine Regel der Form

[mm] $\int\limits f(g(x))\, [/mm] dx = [mm] \frac{F(g(x))}{g'(x)} [/mm] + C$

ableiten, so wie du es anscheinend vorhattest (jedenfalls hast du es so angewendet).

Hierbei ist $F$ die Stammfunktion von $f$.

Bleibe lieber bei deinem ersten Versuch und der richtigen Substituitionsregel! :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]