matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegrale und Subst.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Integrale und Subst.
Integrale und Subst. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale und Subst.: Kleine Problem und richtig so?
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 26.04.2006
Autor: DeusRa

Aufgabe
Berechnen Sie die folgenden Integrale:
(i) [mm] \integral_{1}^{2}{x^3 * ln(x) dx} [/mm]
(ii) [mm] \integral_{0}^{\pi}{e^x * sin(x) dx} [/mm]
(iii) [mm] \integral_{0}^{1}{\bruch{2x+3}{x²+4} dx} [/mm]

Halli Hallo,

so die oberen Integrale soll ich nun berechnen.

Ich habe (i), und (iii) gemacht und wollte fragen, ob ich diese so richtig gemacht habe, falls nicht, wo denn der Fehler liegt.

Zu (i): [mm] \integral_{1}^{2}{x^3 * ln(x) dx}. [/mm] Dieses Integral habe ich mittels Partieller Ableitung bestimmt. Also:
[mm] \integral_{1}^{2}{x^3 * ln(x) dx}=[\bruch{1}{4}*x^4 [/mm] * [mm] ln(x)]^{2}_1- \integral_{1}^{2}{\bruch{1}{4}*x^4 * \bruch{1}{x} dx}= [/mm]
[mm] [\bruch{1}{4}*x^4 *ln(x)]^{2}_1-\integral_{1}^{2}{\bruch{1}{4}*x^3 dx} [/mm]
[mm] =[\bruch{1}{4}*x^4 *ln(x)]^{2}_1-[\bruch{1}{16}*x^4]^{2}_1 [/mm]
[mm] =[\bruch{1}{4}*x^4 *ln(x)-\bruch{1}{16}*x^4]^{2}_1 [/mm]
[mm] =4*ln(2)-1+\bruch{1}{16} [/mm]
[mm] =4*ln(2)-\bruch{15}{16} [/mm]
Also das wäre meine Lösung für (i).

Zu (iii): [mm] \integral_{0}^{1}{\bruch{2x+3}{x²+4} dx}= [/mm]
[mm] \integral_{0}^{1}{\bruch{2x}{x²+4} dx}+ \integral_{0}^{1}{\bruch{3}{x²+4} dx}= [/mm]
[mm] \integral_{0}^{1}{\bruch{2x}{x²+4} dx}+ 3*\integral_{0}^{1}{\bruch{1}{x²+4} dx}. [/mm]
Hier habe ich jetzt das linke Integral mittels Substitution gelöst, und die rechte einfach "aufgeleitet".
Erstmal die Substitution:
$g(x):=y:=x²+4$ somit [mm] g'(x)=\bruch{dg}{dx}=2x \Rightarrow [/mm] $dg=2x dx$
Also [mm] \integral_{0}^{1}{\bruch{2x}{x²+4} dx}=\integral_{g(0)}^{g(1)}{\bruch{dg}{y} dy} [/mm]
Somit:
$[ln(y)]+3*[ln(x²+4)]=[ln(x²+4)]+3*[ln(x²+4)]=[4*ln(x²+4)]$
Also die Werte habe ich jetzt nicht eingesetzt aber das wäre jetzt meine Lösung.


Bei (ii) habe ich absolut keine Ahnung wie ich diese lösen soll, da mir keine geeignete Substitution einfällt. Wäre somit für einen Tipp dankbar.

        
Bezug
Integrale und Subst.: iii falsch
Status: (Antwort) fertig Status 
Datum: 21:59 Mi 26.04.2006
Autor: leduart

Hallo Ra

> Berechnen Sie die folgenden Integrale:
>  (i) [mm]\integral_{1}^{2}{x^3 * ln(x) dx}[/mm]
>  (ii)
> [mm]\integral_{0}^{\pi}{e^x * sin(x) dx}[/mm]
>  (iii)
> [mm]\integral_{0}^{1}{\bruch{2x+3}{x²+4} dx}[/mm]

>  
> Zu (i): [mm]\integral_{1}^{2}{x^3 * ln(x) dx}.[/mm] Dieses Integral
> habe ich mittels Partieller Ableitung bestimmt. Also:
>  [mm]\integral_{1}^{2}{x^3 * ln(x) dx}=[\bruch{1}{4}*x^4[/mm] *
> [mm]ln(x)]^{2}_1- \integral_{1}^{2}{\bruch{1}{4}*x^4 * \bruch{1}{x} dx}=[/mm]
>  
> [mm][\bruch{1}{4}*x^4 *ln(x)]^{2}_1-\integral_{1}^{2}{\bruch{1}{4}*x^3 dx}[/mm]
>  
> [mm]=[\bruch{1}{4}*x^4 *ln(x)]^{2}_1-[\bruch{1}{16}*x^4]^{2}_1[/mm]
>  
> [mm]=[\bruch{1}{4}*x^4 *ln(x)-\bruch{1}{16}*x^4]^{2}_1[/mm]
>  
> [mm]=4*ln(2)-1+\bruch{1}{16}[/mm]
>  [mm]=4*ln(2)-\bruch{15}{16}[/mm]
>  Also das wäre meine Lösung für (i).

Richtig

> Zu (iii): [mm]\integral_{0}^{1}{\bruch{2x+3}{x²+4} dx}=[/mm]
>  
> [mm]\integral_{0}^{1}{\bruch{2x}{x²+4} dx}+ \integral_{0}^{1}{\bruch{3}{x²+4} dx}=[/mm]
>  
> [mm]\integral_{0}^{1}{\bruch{2x}{x²+4} dx}+ 3*\integral_{0}^{1}{\bruch{1}{x²+4} dx}.[/mm]
>  
> Hier habe ich jetzt das linke Integral mittels Substitution
> gelöst, und die rechte einfach "aufgeleitet".

diese Aufleitung ist falsch, differenzier nach der Kettenregel und du siehst es.

>  [mm]g(x):=y:=x²+4[/mm] somit [mm]g'(x)=\bruch{dg}{dx}=2x \Rightarrow[/mm]  
> [mm]dg=2x dx[/mm]
>  Also [mm]\integral_{0}^{1}{\bruch{2x}{x²+4} dx}=\integral_{g(0)}^{g(1)}{\bruch{dg}{y} dy}[/mm]

dieser Teil ist richtig!

>  [mm][ln(y)]+3*[ln(x²+4)]=[ln(x²+4)]+3*[ln(x²+4)]=[4*ln(x²+4)][/mm]

falsch, siehe oben.
ii: wieder partielle Integration, dann hast du cos im Integral, nochmal part. integrieren hast du wieder das Augangsintegral, auf die linke Seite bringen und du hast 2* das ursprüngliche Integral. (der Trick funktionier häufiger, besonders mit sin oder cos im Integranden!)
Gruss leduart

Bezug
                
Bezug
Integrale und Subst.: Jetzt aber...
Status: (Frage) beantwortet Status 
Datum: 23:55 Mi 26.04.2006
Autor: DeusRa

So, habe den Fehler bemerkt, danke !!!
Also:
$ [mm] 3*\integral_{0}^{1}{\bruch{2x}{x²+4} dx}+ 3\cdot{}\integral_{0}^{1}{\bruch{1}{x²+4} dx}. [/mm] $.
Betrachte das linke Integral:

[mm] 3*\integral_{0}^{1}{\bruch{1}{x²+4} dx} [/mm] mittels Substitution x=2t, und $dx=2 dt$
Also: [mm] 3*\integral_{0}^{1}{\bruch{2}{4t²+4} dt}= [/mm]
[mm] \bruch{6}{4}*\integral_{0}^{1}{\bruch{1}{t²+1} dt}= [/mm]
[mm] \bruch{6}{4}*$[arctan(t)]$= [/mm]
[mm] \bruch{6}{4}*$[arctan(\bruch{x}{2})]$ [/mm]
Und somit ergibt alles zusammen:
[mm] $[ln(x²+4)]+\bruch{6}{4}[arctan(\bruch{x}{2})]$ [/mm]
Richtig so ???
Sieht jedenfalls sehr schön aus. :)

Zu (ii):
$ [mm] \integral_{0}^{\pi}{e^x \cdot{} sin(x) dx} [/mm] $
Also mittels Partieller Integration:
$ [mm] \integral_{0}^{\pi}{e^x \cdot{} sin(x) dx} [/mm] $ = [mm] $[e^x [/mm] * [mm] cos(x)]$-\integral_{0}^{\pi}{e^x * cos(x) dx}= [/mm] (nochmals part. Integr.)
[mm] =$[e^x [/mm] * cos(x)]$ - [mm] $[e^x [/mm] * -sin(x)]$ -
[mm] \integral_{0}^{\pi}{e^x * sin(x) dx} \Rightarrow [/mm]
2*$ [mm] \integral_{0}^{\pi}{e^x * sin(x) dx} $=$[e^x [/mm] * [mm] cos(x)]$-$[e^x [/mm] * -sin(x)]$=
$ [mm] \integral_{0}^{\pi}{e^x * sin(x) dx} $=$\bruch{1}{2}*[e^x [/mm] * [mm] cos(x)]$-$[e^x [/mm] * -sin(x)]$

So. Das wärs.


Bezug
                        
Bezug
Integrale und Subst.: fast richtig
Status: (Antwort) fertig Status 
Datum: 00:42 Do 27.04.2006
Autor: leduart

Hallo Ra
iii scheint jetzt richtig

> Zu (ii):
>  [mm]\integral_{0}^{\pi}{e^x \cdot{} sin(x) dx}[/mm]
>  Also mittels
> Partieller Integration:
>  [mm]\integral_{0}^{\pi}{e^x \cdot{} sin(x) dx}[/mm] = [mm][e^x * cos(x)][/mm][mm] -\integral_{0}^{\pi}{e^x * cos(x) dx}=[/mm]

Vorzeichenfehler Stammfkt von sin ist -cos!
der Rest ist dann dadurch falsch, weiter unten dann wieder Stammfkt von cosx ist +sinx!
also mach weiter mit
[mm]\integral_{0}^{\pi}{e^x \cdot{} sin(x) dx}[/mm] = [mm][-e^x * cos(x)][/mm][mm] +\integral_{0}^{\pi}{e^x * cos(x) dx}=[/mm]

Aber das Vorgehen ist richtig.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]