matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegralr: Lösungsansatz ?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Integralr: Lösungsansatz ?
Integralr: Lösungsansatz ? < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralr: Lösungsansatz ?: Frage:
Status: (Frage) beantwortet Status 
Datum: 16:37 So 09.01.2005
Autor: Freddie

Hallo,

kurz vor der 2. Mathematik Klausur (LK) in der 12. Klasse finde ich mich also hier wieder ein. Es geht um das Thema Integralrechnung.

Ich soll rechnerisch und geometrisch Begründen wieso:
[mm] \integral_{0}^{5} [/mm] {f(x) dx} = 25 * [mm] \integral_{0}^{1} [/mm] {f(x) dx}
f(x) beim ersten = Wurzel aus ( 25 - [mm] x^2 [/mm] )
f(x) beim zweiten = Wurzel aus (1 - [mm] x^2 [/mm] ) !

Wenn man die Dinger plottet sieht man das daraus ein Halbkreis entsteht und zwar bei dem ersten mit einem radius von 5 und beim zweiten mit einem radius von 1.

Nun hänge ich bei der Beantwortung der Frage wie man das rechnerisch und geometrisch zeigen kann.

Vielen Dank.

        
Bezug
Integralr: Lösungsansatz ?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 So 09.01.2005
Autor: Hanno

Hallo Freddie!

> Wenn man die Dinger plottet sieht man das daraus ein Halbkreis entsteht und zwar bei dem ersten mit einem Radius von 5 und beim zweiten mit einem radius von 1.

Genau das ist es doch![ok] [ok]  Der Graph der Funktion [mm] $f(x)=\sqrt{r^2-x^2}$ [/mm] stellt einen Halbkreis dar. Wie du weißt ist der Flächeninhalt eines Kreises (und somit auch der des Halbkreises) proportional zum Quadrat des Radius. Verfünffachst du also den Radius, erhältst du den fünfundzwangzigfachen Flächeninhalt. Das ist die geometrische Begründung.

Die analytische Begründung erfolgt einfach über Ausrechnen. Das kriegst' hin, oder?

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]