matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegralrechnung- 2 Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Integralrechnung- 2 Funktionen
Integralrechnung- 2 Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung- 2 Funktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 23:11 Di 01.02.2005
Autor: Disap

Hallo.

Es soll bei der Funktionsgleichung f(x) = [mm] x^3-6x+9x [/mm] und g(x)= -  [mm] \bruch{1}{2}x^2+2x [/mm] der Flächeninhalt im Intervall [0;4] errechnet werden.

1. Schritt
f(x) = g(x)

um auf die Schnittpunkte zu kommen.
dann ergibt sich eine neue Funktionsgleichung, die man zum integrieren benutzen kann:
h(x) = [mm] x^3 [/mm] -  [mm] \bruch{11}{2}x^2+7x [/mm]
und die Schnittpunkte
[mm] x_{1} [/mm] = 0
[mm] x_{2} [/mm] = 2
[mm] x_{3} [/mm] = 3,5

Bis hier hin noch definitiv richtig.

2. Schritt & Frage

Flächeninhalte ausrechnen (Hinweis: Mir ist bewusst, da fehlen die Betragsstriche)

[mm] A_{1}=\integral_{0}^{2} [/mm] h(x) dx= [ [mm] \bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{0}^{2} [/mm] =  [mm] \bruch{10}{3} [/mm]
[ok]
[mm] A_{2}=\integral_{2}^{3,5} [/mm] h(x) dx= [ [mm] \bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{2}^{3,5} \approx [/mm] 1,558
[ok]
[mm] A_{3}=\integral_{3,5}^{4} [/mm] h(x) dx= [ [mm] \bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{3,5}^{4} [/mm] =  0,88

1) Hier bin ich mir nicht sicher, muss ich nun in die Stammfunktion 3,5 einsetzen und das abziehen? So habe ich es hier gemacht.

Oder

2) Muss ich  [mm] \integral_{2}^{3,5} [/mm] h(x) dx + [mm] \integral_{0}^{2} [/mm] h(x) dx davon abziehen?


Also noch mal zur Verdeutlichung: Mein Problem besteht darin, dass mich die Nullstellen/Schnittpunkte irritieren.
Inwiefern berechne ich: [mm] \integral_{3,5}^{4} [/mm] h(x) dx
Was ist mit diesen 3,5 gemeint? Der Flächeninhalt der Funktion bis 3,5 oder einfach nur F(3,5)?

3. Schritt
Nur der Vollständigkeitshalber:

[mm] A_{1}+A_{2}+A_{3}=A_{gesamt} [/mm]


Liebe Grüße Disap

        
Bezug
Integralrechnung- 2 Funktionen: verbessert
Status: (Antwort) fertig Status 
Datum: 23:30 Di 01.02.2005
Autor: informix

Hallo Disap,
>  
> Es soll bei der Funktionsgleichung f(x) = [mm]x^3-6x\red{^2}+9x[/mm] und
> g(x)= -  [mm]\bruch{1}{2}x^2+2x[/mm] der Flächeninhalt im Intervall
> [0;4] errechnet werden.
>  
> 1. Schritt
>  f(x) = g(x)
>  
> um auf die Schnittpunkte zu kommen.
>  dann ergibt sich eine neue Funktionsgleichung, die man zum
> integrieren benutzen kann:
>  h(x) = [mm]x^3[/mm] -  [mm]\bruch{11}{2}x^2+7x[/mm]
>  und die Schnittpunkte
>   [mm]x_{1}[/mm] = 0
>   [mm]x_{2}[/mm] = 2
>   [mm]x_{3}[/mm] = 3,5
>  
> Bis hier hin noch definitiv richtig. [ok]
>  
> 2. Schritt & Frage
>  
> Flächeninhalte ausrechnen (Hinweis: Mir ist bewusst, da
> fehlen die Betragsstriche)
>  
> [mm]A_{1}=\integral_{0}^{2}[/mm] h(x) dx= [ [mm]\bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{0}^{2}[/mm]
> =  [mm]\bruch{10}{3}[/mm] [ok]
>  [ok]
>  [mm]A_{2}=\integral_{2}^{3,5}[/mm] h(x) dx= [ [mm]\bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{2}^{3,5} \approx 1,558 [/mm]

  [notok]
besser: $ [mm] -\bruch{99}{64}$ [/mm] vor allem negativ!!

>  [mm]A_{3}=\integral_{3,5}^{4}[/mm] h(x) dx= [ [mm]\bruch{x^4}{4}- \bruch{11x^3}{6}+ \bruch{7x^2}{2}]_{3,5}^{4}[/mm]

=  0,88 besser: [mm] $\bruch{169}{192}$ [/mm]

>  
> 1) Hier bin ich mir nicht sicher, muss ich nun in die
> Stammfunktion 3,5 einsetzen und das abziehen? So habe ich
> es hier gemacht.

du hast doch bisher so gerechnet, warum zweifelst du nun?! [verwirrt]
Regel: [mm] $F(\mbox{obere Grenze}) [/mm] - [mm] F(\mbox{untere Grenze}) [/mm]  $ wo ist das Problem?!

> Oder
>  
> 2) Muss ich  [mm]\integral_{2}^{3,5}[/mm] h(x) dx +
> [mm]\integral_{0}^{2}[/mm] h(x) dx davon abziehen?
>  
>
> Also noch mal zur Verdeutlichung: Mein Problem besteht
> darin, dass mich die Nullstellen/Schnittpunkte irritieren.
>
> Inwiefern berechne ich: [mm]\integral_{3,5}^{4}[/mm] h(x) dx
>  Was ist mit diesen 3,5 gemeint? Der Flächeninhalt der
> Funktion bis 3,5 oder einfach nur F(3,5)?
>  
> 3. Schritt
>  Nur der Vollständigkeitshalber:
>  
> [mm]|A_{1}|+|A_{2}|+|A_{3}|=A_{gesamt}[/mm]

Du musst hier Beträge setzen, weil ja die mittlere Fläche unter der x-Achse liegt!


Bezug
                
Bezug
Integralrechnung- 2 Funktionen: kleine Ergänzung ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:38 Mi 02.02.2005
Autor: dominik

Es geht ja bei dieser Aufgabe um den Inhalt von Flächen, die zwischen zwei Kurven liegen. Da integriert man im betreffenden Teilintervall "obere Kurve minus untere Kurve". Mit dieser Überlegung braucht man sich um die Vorzeichen der Teilflächen keine Sorgen zu machen!

[mm]A = \integral_{0}^{2}{[f(x)-g(x)] dx}+\integral_{2}^{3.5}{[g(x)-f(x)] dx}+\integral_{3.5}^{4}{[f(x)-g(x)] dx}[/mm]

Dabei sind [mm]f(x)-g(x)=h(x)[/mm] und  [mm]g(x)-f(x)=-h(x)[/mm]

Viele Grüsse
dominik

Bezug
                        
Bezug
Integralrechnung- 2 Funktionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Mi 02.02.2005
Autor: Disap

Hallo.

Erst einmal recht herzlichen Dank für die Antwort von euch und natürlich auch den anderen, die z.B. in den Fragen-Strang einen Blick hineingeworfen haben.

>  du hast doch bisher so gerechnet, warum zweifelst du nun?!
> [verwirrt]
>  Regel: [mm]F(\mbox{obere Grenze}) - F(\mbox{untere Grenze}) [/mm]
> wo ist das Problem?!

Ich habe das Thema anscheinend nicht verstanden, denn für mich würde es mehr Sinn machen, wenn man den Flächeninhalt bis 3,5 errechnet und dann von F(4) abzieht.
Dann muss ich mich wohl noch einmal mit dem Thema auseinandersetzen.


Grüße Disap

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]