matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Integralrechnung
Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 09:01 Do 17.11.2005
Autor: gustavmahler

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gegeben ist die Funktiuon f(x) = -x²+2x. Der Graph dieser Funktion bildet eine Fläche mit der x-Achse. Eine Ursprungsgerade teilt diese Fläche in genau 2 gleich große Teile. Bestimme die Funktion der Ursprungsgerade!

Wer kann mir diese Aufgabe lösen?

        
Bezug
Integralrechnung: Ansatz
Status: (Antwort) fertig Status 
Datum: 10:24 Do 17.11.2005
Autor: Karl_Pech

Hallo gustavmahler,


[willkommenmr]


> Gegeben ist die Funktion [mm] $f\left(x\right) [/mm] = [mm] -x^2 [/mm] + 2x$. Der Graph dieser
> Funktion bildet eine Fläche mit der x-Achse. Eine
> Ursprungsgerade teilt diese Fläche in genau 2 gleich große
> Teile. Bestimme die Funktion der Ursprungsgerade!


Sei [mm] $g\left(x\right) [/mm] := ax$ die gesuchte Ursprungsgerade, die den obigen Bedingungen genügt. Was wissen wir über diese Gerade? Zunächst einmal schneidet sie $f$ in 2 Punkten. Dort gilt:


[mm] $-x^2 [/mm] + 2x = ax [mm] \Leftrightarrow -x^2 [/mm] + [mm] \left(2-a\right)x [/mm] = 0$. Eigentlich sieht man hier auch sofort die Nullstellen: [mm] $x_1 [/mm] = 0 [mm] \vee x_2 [/mm] = 2-a$.


Um $a$ passend wählen zu können, benötigen wir den Flächeninhalt, der von $f$ eingeschlossen wird. Dazu berechnen wir jetzt die Nullstellen von $f$:


[mm] $-x^2 [/mm] + 2x = 0$ und wieder sieht man: [mm] $x_1 [/mm] = 0 [mm] \vee x_2 [/mm] = 2$.


Machen wir uns an dieser Stelle mal eine Skizze von dem, was wir bereits haben:


[Dateianhang nicht öffentlich]


Aus welchen Flächen besteht also die Hälfte der Fläche von 0 bis 2, die von $f$ eingeschlossen wird? Doch wohl aus der Fläche von 0 bis $2 - a$, die von $g$ eingeschlossen wird, und von $2 - a$ bis 2, die von $f$ eingeschlossen wird. Die Summe dieser Teilflächen ergibt gerade die gesuchte Fläche. Diesen Sachverhalt drücken wir mathematisch formal aus:


[mm]\frac{{\int\limits_0^2 {\left( { - x^2 + 2x} \right)dx} }} {2} = \int\limits_0^{2 - a} {ax} dx + \int\limits_{2 - a}^2 {\left( { - x^2 + 2x} \right)} dx[/mm]


Dies ist letztlich eine Gleichung mit nur einer Unbekannten. Löse Diese nach $a$ auf, und Du bist fertig. Als Tip:


1.) Es kommt eine irrationale Zahl raus, die aus einer Differenz besteht.

2.) Wenn Du diese Gleichung auflöst, so wende auf keinen Fall die binomischen Formeln an! Versuche stattdessen das Ganze geschickt aufzulösen (sinnvoll Klammern; Gleichung an geeigneter Stelle mit -2 multiplizieren), und Du bist schnell fertig. Oder benutze die binomischen Formeln, und leide ein Bißchen. [a][Bild Nr. 1 (fehlt/gelöscht)]



Viele Grüße
Karl
[user]





Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Integralrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:58 Fr 18.11.2005
Autor: gustavmahler

Hallo Karl_Pech,
danke für Deine schnelle und umfangreiche Antwort. Das Problem ist allerdings: bis zur Aufstellung der Integrale bin ich/sind wir auch schon in ähnlicher Weise gekommen und haben auch, wie von Dir richtig erkannt fürchterlich gelitten, wegen der binomischen Formeln. Leider sind wir in eine Sackgasse geraten. Kannst Du mir bitte die vollständige Auflösung der Integralgleichung aufschreiben. Deine Methode habe ich nicht ganz verstanden.
Das wäre riesig nett und ich bedanke mich tausend mal bei dir.
Gruß
gustavmahler

Bezug
                        
Bezug
Integralrechnung: gib bitte deinen Rechenweg an.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:16 Sa 19.11.2005
Autor: Karl_Pech

Hallo gustavmahler,


>  [..] und haben auch, wie von Dir richtig erkannt fürchterlich
> gelitten, wegen der binomischen Formeln. Leider sind wir in
> eine Sackgasse geraten.


Es wäre schön, wenn Du uns dann deinen Rechenweg bis zu dem Punkt aufschreiben würdest, wo Du gescheitert bist. Dann müßte ich nämlich nicht schon Probleme lösen, die ihr bereits gelöst habt.

Hast Du übrigens versucht den Tipp, den ich dir für das Lösen der Gleichung gegeben habe, zu befolgen? Damit hättest Du nämlich gar keine binomischen Formeln benutzen müssen.


Viele Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]