matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:04 Mo 29.01.2007
Autor: matheloserin

Aufgabe
Bestimme aufgrund der geometrischen Definition:

[mm] a)\integral_{-2}^{0}{-x^3 dx} [/mm]
[mm] b)\integral_{0}^{3}{2*x dx} [/mm]

hallo mathe freunde!
ich hab ein kleines problem....
ich weiß nicht wie man diese beiden integrale ausrechnet. mein problem ist dabei...das ich [mm] x^3 [/mm] und zb x ganz normal integral ausrechen kann. einmal mit der formel  [mm] (b^4-a^4)/4 [/mm] und einmal für x: [mm] (b^2-a^2)/2 [/mm]
aber wie mache ich das denn bei [mm] -x^3 [/mm] und 2x?
danke für eure hilfe

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Mo 29.01.2007
Autor: GorkyPark

Hey!

Deine Aufgabe ist - glaube ich - falsch gestellt. Da steht geschrieben: [mm] f(-x^{3}). [/mm] Das macht aber wenig Sinn. Ich nehme an, du meinst: [mm] f(x)=-x^{3}. [/mm]

Wenn du [mm] x^{3} [/mm] integrieren kannst, dann ist doch [mm] -x^{3} [/mm] kein Problem:

[mm] -x^{3}=-1*x^{3}. [/mm]

Das -1 ist eine Konstante und du kannst diese vor das Integral nehmen.

[mm] \integral_{a}^{b}{-x^{3} dx}=-1*\integral_{a}^{b}{x^{3} dx}. [/mm]

Jetzt nur noch in den Grenzen integrieren.
Die 2 kannst du bei 2x auch vors Integral nehmen,  da es auch eine Konstante.

Hilft das was? Ich sehe nämlich keinen Sinn in der Aufgabe, da du die Lösung ja praktisch hast :D

Tschüss

GorkyPArk

Bezug
                
Bezug
Integralrechnung: rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:02 Mo 29.01.2007
Autor: matheloserin

also du meinst ja..das ich das -1 eifach davor stellen soll
dann wäre das ja dann:
-1*( [mm] (0)^4-(-2^4)/4= [/mm] -1*( -16/4)= -1*-4=4 oder?

kannst du das denn mit sicherheit sagen, dass deine idee richtig ist? oder kann man wirklich nicht

[mm] \integral_{-2}^{0}{-x^3 dx} [/mm] ausrechnen? aber das steht so bei mir im buch...also muss das ja irgendwie so sein oder?

Bezug
                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Mo 29.01.2007
Autor: GorkyPark

hi!

Ja, das was ich dir gesagt habe, stimmt schon. Und du hast richtig gerechnet, denn die Fläche beträgt 4.

Nur bin ich nicht sicher, ob das gefragt war. Dieses [mm] f(-x^{3}) [/mm] stört mich. Vielleicht kann dir jemand anders hier besser helfen als ich :D

Ciao

GorkyPArk

Bezug
                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Mo 29.01.2007
Autor: Bastiane

Hallo matheloserin!

Bist du sicher, dass da wirklich das Integral von [mm] f(-x^3) [/mm] gemeint ist? Manchmal können User unseren Formeleditor nicht benutzen und lasse das f unter dem Integral einfach stehen obwohl sie eine Funktion angegeben haben.

Oder steht irgendwo anders in der Aufgabe vielleicht noch, was f sein soll? Oder wie lautet die Formulierung, was du machen sollst?

Viele Grüße
Bastiane
[cap]

Bezug
                        
Bezug
Integralrechnung: beide Wege
Status: (Antwort) fertig Status 
Datum: 08:36 Di 30.01.2007
Autor: Roadrunner

Hallo Matheloserin!


> also du meinst ja..das ich das -1 eifach davor stellen
> soll, dann wäre das ja dann:
>  -1*( [mm](0)^4-(-2^4)/4=[/mm] -1*( -16/4)= -1*-4=4 oder?

[ok]

  

> kannst du das denn mit sicherheit sagen, dass deine idee
> richtig ist?

[ok] Das ist absolut in Ordnung so gemäß der MBFaktorregel für die Integralrechnung.


> oder kann man wirklich nicht [mm]\integral_{-2}^{0}{-x^3 dx}[/mm] ausrechnen?

Auch so kann man das rechnen. Mann muss halt mit dem Vorzeichen aufpassen:

[mm] $\integral_{-2}^{0}{-x^3 \ dx} [/mm] \ = \ [mm] \left[ \ -\bruch{1}{4}x^4 \ \right]_{-2}^{0} [/mm] \ = \ [mm] -\bruch{1}{4}*0^4-\left(-\bruch{1}{4}*(-2)^4\right) [/mm] \ = \ 0 \ [mm] \red{+} [/mm] \ [mm] \bruch{1}{4}*16 [/mm] \ = \ 4$


Gruß vom
Roadrunner


Bezug
        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:26 Di 30.01.2007
Autor: Bastiane

Hehe,

wer hat denn da jetzt doch das f unter dem Integral verschwinden lassen??? Ich dachte, die Aufgabe wäre exakt so abgeschrieben gewesen - mit dem f? Das hätte uns einige Gedanken erspart! ;-)

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]