matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Lösungs Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 01.12.2004
Autor: drummy

Hey Leute,

folgende Aufgaben soll ich lösen:

Bestimmen Sie die obere Grenze b bzw. die untere Grenze a.

a) [mm] \integral_{0}^{b} {f(x^2) dx} [/mm]

b) [mm] \integral_{a}^{5} {f(x^2) dx} [/mm]

c) [mm] \integral_{1}^{b} {f(2x^3) dx} [/mm]

d) [mm] \integral_{a}^{10} {f(1/x^2) dx} [/mm]

Also Ich hab bei a) 3 b) [mm] \wurzel[3]{314} [/mm] c) [mm] \wurzel[4]{79} [/mm] d) 0,25

Wäre nett, wenn die Ergebnisse mal jemand nachrechnen könnte.

Grüße drummy

        
Bezug
Integralrechnung: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Mi 01.12.2004
Autor: Loddar

Hallo Drummy,

ich muß gestehen, mir ist die Aufgabenstellung nicht ganz klar.

Ich denke mal, das müssten alles Gleichungen sein, d.h. es fehlen die jeweiligen Ergebnisse der Integrale, um die zugehörigen Grenzen berechnen zu können.

Bitte schau' doch noch mal in der Aufgabenstellung nach ...

Zudem sind mir die zu integrierenden Funktionen unklar.
Meinst Du z.B. bei Aufgabe a.)
[mm]\integral_{0}^{b} {f(x) dx} = \integral_{0}^{b} {x^2 dx}[/mm] ??

In der dargestellten Form machen die Aufgaben m.E. überhaupt keinen Sinn.

Grüße Loddar



Bezug
        
Bezug
Integralrechnung: rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Mi 01.12.2004
Autor: Grizzlitiger

hi
entweder das, ooder man soll das Integral einfach bestimmen, mit b als obere Grenze. am besten du sagst nochmal was du meinst, vorher können wir dir nicht helfen.
mfg johannes

Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Mi 01.12.2004
Autor: drummy

Sorry!!!!

War in Eile und hab vergessen die Gleichzeichen hinzuschreiben, also:

bei a) =9 b)=63 c) =40 und d) =0,5

bei meinen gefundenen Lösungen hat sich auch noch was geändert.
b) -4  c) 3 und d) [mm] \bruch{5}{3} [/mm]

Nochma Sorry!!

Bezug
        
Bezug
Integralrechnung: Teilantwort, nur Aufgabe a)
Status: (Antwort) fertig Status 
Datum: 21:11 Mi 01.12.2004
Autor: JanSu

Deine Antwort zu Frage a) ist mit b=3 richtig, denn

(1) [mm] \bruch{1}{3}x^{3} [/mm] = 9

(2) [mm] x^{3} [/mm] = 27

(3) x          = [mm] 27^\bruch{1}{3} [/mm]

(4) x          =  3

Für die anderen Aufgaben habe ich heute leider keine Zeit mehr. :-/




Bezug
        
Bezug
Integralrechnung: Lösungsvorschläge b, c, d
Status: (Antwort) fertig Status 
Datum: 22:46 Mi 01.12.2004
Autor: dominik

b)   [mm] \integral_{a}^{5} {x^{2} dx} [/mm] =  [mm] \bruch{x^{3}}{3} [/mm] von a bis 5 =
  [mm] \bruch{1}{3} (5^{3}-a^{3}) [/mm] = 63
[mm] \gdw 125-a^{3} [/mm] = 189
[mm] \gdw -a^{3} [/mm] = 189-125=64  [mm] \Rightarrow [/mm] a=-4

c)  [mm] \integral_{1}^{b} {2x^{3} dx} [/mm] =   [mm] \bruch{2x^{4}}{4} [/mm] von 1 bis b =
[mm] \bruch{x^{4}}{2} [/mm] von 1 bis b =  [mm] \bruch{1}{2}(b^{4}-1) [/mm] = 40
[mm] \gdw b^{4}-1 [/mm] = 80
[mm] \gdw b^{4} [/mm] = 81  [mm] \Rightarrow b_{1}=+3; b_{2}=-3 [/mm]

d) [mm] \integral_{a}^{10}{ \bruch{1}{x^{2} }dx} [/mm] =  [mm] \integral_{a}^{10} {x^{-2} dx} [/mm] =  [mm] \bruch{x^{-1}}{-1} [/mm] von a bis 10 =  [mm] -\bruch{1}{x} [/mm] von a bis 10 = -( [mm] \bruch{1}{10}- \bruch{1}{a}) [/mm] = - [mm] \bruch{1}{10}+ \bruch{1}{a} [/mm] = 0.5 =  [mm] \bruch{1}{2} [/mm]
[mm] \gdw \bruch{1}{a} [/mm] =  [mm] \bruch{1}{2} [/mm] +  [mm] \bruch{1}{10} [/mm] =  [mm] \bruch{6}{10}= \bruch{3}{5} [/mm]
[mm] \gdw [/mm] a= [mm] \bruch{5}{3} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]