matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Sa 24.01.2009
Autor: arxi

Aufgabe
Beweise: Für alle m,n [mm] \in \IN [/mm] gilt:

[mm] \integral_{0}^{1}{x^{n} * (1-x)^{m} dx} [/mm] = [mm] \integral_{0}^{1}{x^{m} * (1-x)^{n} dx} [/mm]

Ich muss zugeben, dass ich nicht einmal die Idee eines Ansatzes hab :-(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Sa 24.01.2009
Autor: Event_Horizon

Hallo!

Ich habe es nicht ausprobiert, aber was hälst du von dem Ansatz über die Binominalkoeffizienten:


[mm] x^n(1-x)^m=\sum_{i=0}^{m}\vektor{m\\k}(-1)^ix^{m+n-i} [/mm]

[mm] x^m(1-x)^n=\sum_{i=0}^{n}\vektor{n\\k}(-1)^ix^{m+n-i} [/mm]

Daß die beiden Terme generell nicht gleich sind, erkennt man schon alleine an der unterschiedlichen Anzahl an Summanden. Aber es ist ein leichtes, die beiden Summenterme nach x zu integrieren, und dann auch noch die Grenzen einzusetzen. So wie ich das sehe, wird man dann "nur noch" mit den Binominalkoeffizienten rumbasteln, um da die Gleichheit zu zeigen.

Bezug
        
Bezug
Integralrechnung: Substitution
Status: (Antwort) fertig Status 
Datum: 12:55 Sa 24.01.2009
Autor: Loddar

Hallo arxi!


Führe im linken Integral die Subsitution $u \ := \ 1-x$ durch. Nach ein/zwei Umformungen erhält man dan das Gewünschte.


Gruß
Loddar


Bezug
        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:33 So 25.01.2009
Autor: arxi

danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]