matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Tip
Status: (Frage) beantwortet Status 
Datum: 16:54 Mi 21.07.2010
Autor: stffn

Aufgabe
[mm] \integral_{1}^{e}{\bruch{ln(x)}{x} dx} [/mm]

Hallo meine Freunde, ich habe ein Problem bei dieser Aufgabe.
Kann mir jemand sagen wo mein Fehler liegt? Kann ich überhaupt durch substitution auf das Ergebnis kommen?

[mm] \integral_{1}^{e}{\bruch{ln(x)}{x} dx}=\integral_{1}^{e}{\bruch{1}{x}ln(x) dx} [/mm]

Substitution: u=lnx
[mm] du=\bruch{1}{x}dx [/mm]
dx=xdu

[mm] \Rightarrow \integral_{1}^{e}{\bruch{1}{x}ln(x) dx}=\integral_{0}^{1}{\bruch{1}{x}x du}=\integral_{0}^{1}{1 du}=[u]_{0}^{1}=[ln|x|]_{0}^{1} [/mm]

Aber Davon abgesehen, dass ln(0) nicht definiert ist, muss ich auf das Ergebnis [mm] \bruch{1}{2} [/mm] kommen.

VIelen Dank, schöne Grüße!

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mi 21.07.2010
Autor: schachuzipus

Hallo stffn,

> [mm]\integral_{1}^{e}{\bruch{ln(x)}{x} dx}[/mm]
>  Hallo meine
> Freunde, ich habe ein Problem bei dieser Aufgabe.
>  Kann mir jemand sagen wo mein Fehler liegt? Kann ich
> überhaupt durch substitution auf das Ergebnis kommen?
>  
> [mm]\integral_{1}^{e}{\bruch{ln(x)}{x} dx}=\integral_{1}^{e}{\bruch{1}{x}ln(x) dx}[/mm]
>  
> Substitution: u=lnx
>  [mm]du=\bruch{1}{x}dx[/mm]
>  dx=xdu [ok]
>  
> [mm]\Rightarrow \integral_{1}^{e}{\bruch{1}{x}ln(x) dx}=\integral_{0}^{1}{\bruch{1}{x}x du} [/mm] [notok]

Da fehlt das u für [mm] \ln(x) [/mm]

Richtig: [mm] $...=\int\limits_{0}^{1}{\frac{u}{x} \ xdu}=\int\limits_{0}^{1}{u \ du}$ [/mm]

> [mm] $=\integral_{0}^{1}{1 du}=\left[u\right]_{0}^{1}=[ln|x|]_{0}^{1}$ [/mm]

Abgesehen davon, dass die Stammfkt. [mm] $\frac{1}{2}u^2$ [/mm] lauten muss, musst du doch nach dem Resubstituieren wieder die alten Grenzen verwenden!!

Wenn du eh die Absicht hast zu resubstituieren, kannst du komplett ohne Grenzen rechnen, dir das Umrechnen sparen und nachher alles in den ursprünglichen x-Grenzen betrachten

> [/mm]
> [mm][u]Aber Davon abgesehen, dass ln(0) nicht definiert ist, muss [/u][/mm]
> [mm][u]ich auf das Ergebnis [mm]\bruch{1}{2}[/mm] kommen. [/u][/mm]
> [mm][u][/u][/mm]
> [mm][u]VIelen Dank, schöne Grüße! [/u][/mm]


Gruß

schachuzipus

Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Mi 21.07.2010
Autor: stffn

Stimmt, ich glaube da fehlt mir einfach noch die Routine. Danke für den Tip-

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]