matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Integration
Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: kleines Problem
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:29 Mi 14.05.2008
Autor: RudiBe

Aufgabe
Die maximale Fläche zwischen 2 Funktionen (zu y symmetrisch) ist gesucht:
Y=ax² ; [mm] y=\bruch{a-x²}{a} [/mm]

als Xs (Schnittpunkte beider Funktionen) habe ich [mm] \wurzel{\bruch{a}{a²+1}} [/mm]

der Teilschritt bis wohin alles passt ist:

[mm] 2*\integral_{0}^{Xs}{\bruch{a-x²}{a}-a*x² dx} [/mm]

jetzt tu ich mir nur schwer so weiter zu machen, dass die Gleichung nicht ausartet.
Im Grunde genommen ist die Frage, wie komme ich von der Gleichung oben auf

[mm] 2*\integral_{0}^{Xs}{1-\bruch{1+a²}{a}*x² dx} [/mm] ?

Wäre für kleine Unterstützung dankbar.



PS: die Frage wurde in keinem anderen Forum gestellt

        
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Mi 14.05.2008
Autor: Tyskie84

Hi,

Kann es sein dass es [mm] 2\cdot\integral_{0}^{X_{s}}{1-\bruch{1\red{-}a^{2}}{a}\cdot\\x^{2} dx} [/mm] heissen muss.

[hut] Gruß

Bezug
                
Bezug
Integration: nein
Status: (Frage) beantwortet Status 
Datum: 15:18 Mi 14.05.2008
Autor: RudiBe

lt. Lösungsheft muss es ein + sein

in weiterer Folge führt das auch zum logisch richtigen Ergebnis

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mi 14.05.2008
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Rüdiger,

du kommst von dem einen Integral zum anderen, indem du's zusammenfasst:

$2\cdot{}\int\limits_0^{x_s}\left(\frac{a-x^2}{a}-ax^2\right) \ dx}=2\cdot{}\int\limits_0^{x_s}\left(\frac{a-x^2}{a}-\frac{a\blue{\cdot{}a}x^2}{\blue{a}\right) \ dx}=2\cdot{}\int\limits_0^{x_s}\left(\frac{a-x^2-a^2x^2}{a}\right) \ dx}$

$=2\cdot{}\int\limits_0^{x_s}\left(\frac{a+(-1-a^2)x^2}{a}\right) \ dx}=2\cdot{}\int\limits_0^{x_s}\left(\frac{a-(1+a^2)x^2}{a}\right) \ dx}=2\cdot{}\int\limits_0^{x_s}\left(\frac{a}{a} \ - \ \frac{(1+a^2)x^2}{a}\right) \ dx}=2\cdot{}\int\limits_0^{x_s}\left(1 \ - \ \frac{(1+a^2)}{a}\cdot{}x^2\right) \ dx}$



LG

schachuzipus

Bezug
                                
Bezug
Integration: Danke ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Mi 14.05.2008
Autor: RudiBe

für den Tipp,

werd's mir merken

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]