matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Integration
Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Mi 21.01.2009
Autor: aliaszero

Aufgabe
Es sei f:[0,1] -> R stetig so dass [mm] \integral_{0}^{1}{f(x) dx} [/mm] = 1/2

(i) Berechnen Sie [mm] \integral_{0}^{1}{x dx} [/mm]
(ii) Zeigen Sie unter Benutzung von (i) dass die Gleichung f(x)=x mindestens eine Lösung in [0,1] hat

Hi,
zunächst Aufagbe (i).. Als Ergebnis habe ich 1/2 raus und das war eindeutig zu einfach... ist da wirklich nichts weiter zu beachten?

Zu (ii) Hier habe ich dagegen nichtmal einen Ansatz

lg

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Mi 21.01.2009
Autor: zetamy

Hallo,

>  zunächst Aufagbe (i).. Als Ergebnis habe ich 1/2 raus und
> das war eindeutig zu einfach... ist da wirklich nichts
> weiter zu beachten?

Teil (i) ist wirklich einfach... und von dir richtig berechnet.

>  
> Zu (ii) Hier habe ich dagegen nichtmal einen Ansatz
>  

Kennst du den Mittelwertsatz der Integralrechnung? Der Satz besagt: Für eine stetige Funktion $g: [mm] [a,b]\rightarrow\IR$ [/mm] existiert ein [mm] $x_0\in[a,b]$, [/mm] so dass [mm] $\int_a^b [/mm] g(x)\ dx = [mm] g(x_0)\cdot [/mm] (b-a)$.
Wenn du den Satz auf beide Funktionen bzw. Integrale bzw. anwendest, ist die Lösung fast so einfach wie in (i).


Gruß, zetamy

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mi 21.01.2009
Autor: aliaszero

Hi,
also ich verstehs noch nicht ganz. Welche zwei Funktionen meinst du? Ich hab doch nur eine gegeben..

Oder ist damit gemeint:

[mm] \integral_{0}^{1}{x dx} [/mm] = [mm] f(x_{0}) [/mm] * (1-0)
Diese Gleichung würde doch nur stimmen wenn ich für [mm] x_{0}=1/2 [/mm] einsetze.. aber das kanns doch nicht sein oder?

lg


Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Mi 21.01.2009
Autor: reverend

Hallo aliaszero,

nein, das kanns in der Tat noch nicht sein, war aber von zetamy auch nicht so gemeint. Ich schreibe mal Deine Aufgabe minimal um:

> Es sei [mm] \a{}f:[0,1] \rightarrow\IR [/mm] stetig, so dass $ [mm] \integral_{0}^{1}{f(x)\ dx} [/mm] $ = [mm] \bruch{1}{2} [/mm]

> Es sei [mm] \blue{g:[0,1] \rightarrow\IR\quad \a{}g(x)=x} [/mm]

> (i) Berechnen Sie $ [mm] \integral_{0}^{1}{\blue{g(x)}\ dx} [/mm] $
> (ii) Zeigen Sie unter Benutzung von (i), dass die Gleichung
> [mm] f(x)\blue{-g(x)=0} [/mm] mindestens eine Lösung in [mm] \a{}[0,1] [/mm] hat.

Schon alles klar? Dann probiers erstmal selbst, bevor Du weiterliest.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Nachdem (i) berechnet ist, ist ja bekannt:

[mm] \integral_{0}^{1}{f(x)\ dx}-\integral_{0}^{1}{g(x)\ dx}=0 [/mm]

Nun kannst Du mit dem Mittelwertsatz (oder mit dem Satz von Rolle) unmittelbar zeigen:

[mm] 0=\integral_{0}^{1}{f(x)\ dx}-\integral_{0}^{1}{g(x)\ dx}=(f(x)-g(x))*(1-0)=f(x)-g(x) [/mm]

hat eine Lösung in [mm] \a{}[0,1]. [/mm]

lg,
reverend

Bezug
                                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:17 Do 22.01.2009
Autor: aliaszero

ok ich glaub jetzt hab ichs verstanden. Ich hatte nur ein Problem damit, dass man einfach so eine neue Funktion rein gestellt hat.

Kann ich es denn auch in der Form schreiben:

[mm] \integral_{0}^{1}{f(x)g(x) dx} [/mm] = [mm] f(\varepsilon) \integral_{0}^{1}{g(x) dx} [/mm]
[mm] \integral_{0}^{1}{x² dx} [/mm] = [mm] f(\varepsilon) [/mm] * [mm] \integral_{0}^{1}{x dx} [/mm]
1/3 = [mm] f(\varepsilon) [/mm] * 1/2
2/3 = [mm] f(\varepsilon) [/mm]
--> [mm] \varepsilon [/mm] = 2/3 [mm] \in [/mm] [0,1]

lg

Bezug
                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Do 22.01.2009
Autor: reverend

Ich hab doch keine neue Funktion reingestellt... [pfeif]
Die war doch schon da, sie hieß nur noch nicht so.

Irreführend an der Dir vorliegenden Aufstellung ist doch die Suche nach f(x)=x. Das liest sich nicht richtig, es sieht so aus, als würde hier f(x) definiert, und das auch noch passend zur bekannten Vorgabe des bestimmten Integrals. Dabei ist hier doch gesucht x-f(x)=0, was zwar das gleiche ist, aber einen nicht gleich auf falsche Fährten lockt. f(x)=g(x) ist da konventioneller und auch deutlich weniger missverständlich.

Den Rest Deines Beitrags verstehe ich überhaupt nicht. Was tust Du da? Selbst wenn Du irgendein [mm] \varepsilon [/mm] ermitteln muss, verstehe ich nicht, warum du das so tust, wie Du es tust. Was sind das für Umformungen? Wie kommt denn auf einmal [mm] f(\varepsion) [/mm] vor das Integral?

[kopfkratz3]
reverend

Bezug
                                                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:34 Do 22.01.2009
Autor: aliaszero

Ich hab das aus dem "Höhere Mathematik 1, Meyberg, Vachenauer" Seite 165
Da steht:
Sind die Funktionen f,g auf [a,b] stetig, g(x)>=0 für alle x [mm] \in [/mm] [a,b], dann gibt es wenigstens eine Stelle [mm] \varepsilon \in [/mm] [a,b] mit

[mm] \integral_{a}^{b}{f(x)g(x) dx}=f(\varepsilon) \integral_{a}^{b}{g(x) dx} [/mm]

Ist das auf meine Aufgabe nicht zutreffend oder hab ich das doch nur falsch übernommen?

lg

Bezug
                                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 00:54 Do 22.01.2009
Autor: leduart

Hallo
Du musst die Fkt (f(x)-x) betrachten und von 0 bis 1 integrieren. Du weisst das ergibt 0!
darauf wendest du jetzt den mittelwertsatz an!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]