matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Integration
Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:42 So 23.01.2011
Autor: Random

Aufgabe
Finden Sie eine Rekursionsformel zur Berechnung der Integrale  [mm] I_n:=\integral{(cosx)^{2n}dx} [/mm] für [mm] n\in\IN. [/mm] Geben Sie [mm] I_1 [/mm] und [mm] I_2 [/mm] expliziet an.

Hallo Matheraum!!!

Also ich denke mit "expliziet angeben" ist gemeint, dass ich einfach bei [mm] I_1 [/mm] 1 für n einsetze und durch z.B. partielle Integration dann das Interal bestimme (analog für [mm] I_2). [/mm]

Ich weiss, dass die Rekursive Formel etwas mit "n" und "n+1" zutun hat. Aber was ich damit mache... kien Plan xD.

Vielen Dank im Voraus,

Ilya

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 So 23.01.2011
Autor: dormant


> Finden Sie eine Rekursionsformel zur Berechnung der
> Integrale  [mm]I_n:=\integral{(cosx)^{2n}dx}[/mm] für [mm]n\in\IN.[/mm]
> Geben Sie [mm]I_1[/mm] und [mm]I_2[/mm] expliziet an.
>  Hallo Matheraum!!!
>
> Also ich denke mit "expliziet angeben" ist gemeint, dass
> ich einfach bei [mm]I_1[/mm] 1 für n einsetze und durch z.B.
> partielle Integration dann das Interal bestimme (analog
> für [mm]I_2).[/mm]

Genau. Dann machst du das Gleich für ein beliebiges [mm] n\ge [/mm] 3, so dass du aus dem Integral [mm] I_{n-1} [/mm] den Integral [mm] I_n [/mm] ausrechnen kannst. Ich glaube du sollst einfach [mm] I_n [/mm] ein Mal partiell integrieren, und dann wirst einen Ausdruck der Form [mm] I_n [/mm] = C + [mm] aI_{n-1} [/mm] haben, wobei du die Konstanten C und a bestimmen sollst. Fang schon mal an und führe eine partielle Integration für ein beliebiges n aus um zu sehen was rauskommt.
  

> Ich weiss, dass die Rekursive Formel etwas mit "n" und
> "n+1" zutun hat. Aber was ich damit mache... kien Plan xD.
>
> Vielen Dank im Voraus,
>
> Ilya  

dormant

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 So 23.01.2011
Autor: Random

Hey dormant!

Danke für deine Antwort.

Also ich habe jetzt [mm] I_1 [/mm] berechnet un da kommt [mm] \bruch{sin(x)*cos(x)+x}{2} [/mm]

Hab [mm] I_2 [/mm] doch noch hingekriegt: [mm] \bruch{3x}{8}+\bruch{sin(2x)}{4}+\bruch{sin(4x)}{32}+C [/mm]


Was soll ich jett machen? Soll ich von [mm] I_2 I_1 [/mm] abziehen?

Danke im Voraus,

Ilya

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 So 23.01.2011
Autor: dormant


> Hey dormant!
>
> Danke für deine Antwort.
>
> Also ich habe jetzt [mm]I_1[/mm] berechnet un da kommt
> [mm]\bruch{sin(x)*cos(x)+x}{2}[/mm]
>  
> Hab [mm]I_2[/mm] doch noch hingekriegt:
> [mm]\bruch{3x}{8}+\bruch{sin(2x)}{4}+\bruch{sin(4x)}{32}+C[/mm]
>  
>
> Was soll ich jett machen? Soll ich von [mm]I_2 I_1[/mm] abziehen?

Du sollst jetzt für ein [mm] n\ge [/mm] 3 das n als Parameter behandeln und ein Mal partiell integrieren. Dann wirst du eine Summe von einer Konstanten (die wahrscheinlich von n abhängen wird) und einem Integral, welcher ähnlich dem [mm] I_{n-1} [/mm] sein soll. Mach das und schaue was rauskommt.
  

> Danke im Voraus,
>
> Ilya


Bezug
                                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 So 23.01.2011
Autor: Random

"Okay soll ich partiell vorgehen und dabei in [mm] cos^2(x) [/mm] und in [mm] cos^n(x) [/mm] auftrennen?"

Das geht gar nicht da ich dann ja [mm] cos^{2+n}(x) [/mm] hätte...

Wie soll ich das integrieren =O?

MfG

Ilya

Bezug
                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 So 23.01.2011
Autor: Gonozal_IX

Hallo Ilya,

schau mal hier, da wurde die Aufgabe bereits besprochen.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]