Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Vorweg (weil ihr sinnvollerweise drauf besteht): "Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt."
Moin - ein Neuer grüßt euch - und freut sich, ein offensichtlich lebendiges Forum gefunden zu haben.
Ich denke, ich beginne mal mit der Aufgabenstellung und erläutere dann, wo's hakt?
"Bestimmen Sie die Funktion, deren Graph eine nach oben geöffnete Parabel mit dem Scheiten (0|12) ist und mit der x-Achse die Fläche 32FE einschließt"
Gut, gut, soweit erst einmal nicht tragisch.
Parabel -> Also zweiten Gerades [mm] (f(x)=ax^2+bx+c)
[/mm]
Dann ist der Scheitel auch kein Problem: f(0)=12; c=12
Dann haben wir noch die Aussage, dass dort der "Scheitel" liegt, folglich sollte f'(0)=0 sein: f'(x)=2ax+b;
f'(0)=0; -> b=0;
Es lässt sich also jetzt sagen: [mm] f(x)=ax^2+12;
[/mm]
Nur mit dem Integrieren habe ich jetzt echte Probleme. Die 32 Flächeneinheiten sind ja schön und gut, das Integral lässt sich ja auch aufstellen - aber ich sehe nicht, wie ich mit fehlendem A und fehlenden X-Achsen-Schnittpunkten (was sich gegenseitig bedingt - toll) weiter kommen kann. Hier hoffe ich auf eure Hilfe. Die "nach oben geöffnete Parabel" deutet ja wohl auf das Vorzeichen hin (positiv) - aber damit habe ich noch wenig gewonnen.
Danke euch schon einmal für eure Mühen!
Grüße
der_benni
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:08 Fr 26.08.2005 | Autor: | der_benni |
Hi Loddar!
Ein sehr großer Dank geht in deine Richtung. In der Zwischenzeit hab' ich mich hier mal durch die Foren gelesen und geguckt, was ich denn selbst beitragen kann - und dabei zu dem Ergebnis gekommen, dass du ja -überall- stehst.
S(0|-12) ist richtig. Habe ich übersehen - entschuldige.
Der Rest sieht mir beim Durchlesen sehr plausibel aus - ich werde mich jetzt dransetzen, den Rechner wegpacken und das selbst noch mal durchgehen. Ich hatte mich zusehr auf ein absolutes Ergebnis sowohl für A, als auch für die Grenzwerte versteift. Aber das Eine in der Abhängigkeit des Anderen auszudrücken... Mir fällt auf, dass diese Abhängigkeit besteht - und ich beschwere mich noch drüber.
0 als unteren Grenzwert einzusetzen hatte ich auch im Ansatz - hat mich nur nicht weiter gebracht. Dass die Fläche dann -16 (Hälfte) sein musste - logisch.
Also wie gesagt: Ein großes Danke an dich. Gucke mir das ganze noch mal durch und gebe dir dann meine Ergebnisse. Würde mich aber sehr wundern, wenn du nicht Recht behalten solltest
Grüße
der_benni
|
|
|
|
|
Hi Loddar!
Da kann man mal sehen. Stehe - obwohl mir das so einleuchtend erschien - vor einer Wand. Das gemeine ist: Die Wand ist zu groß.
Problem ist, dass ich mir eigentlich recht sicher bin, das Integrieren auf die Reihe bekommen zu haben - ist jetzt auch nicht die Kunst. Nur mit dem Isolieren (und nein, das ist zwar etwas lächerlich, aber trotzdem kein Scherz) hapert es. Wenn ich dich noch einmal um einen Hinweis bitten dürfte?
Bei den Nullstellen sind wir uns einig - [mm][mm] \pm\wurzel{\bruch{12}{a}}[/mm] [mm].
Auch bei der anschließenden Schlussfolgerung: [mm] \integral_{0}^{\wurzel{\bruch{12}{a}}} ax^2-12 dx\
[/mm]
Daraus folgt (in meinen Augen - aber ich denke doch, dass ich mich hier nicht täusche) [mm] [\bruch{1}{3}ax^3-12x]^{\wurzel{\bruch{12}{a}}}_{0}\ [/mm] was -16 sein sollte (Hälfte der Fläche, da 0 die Untergrenze ist)
Soweit ok? Jetzt dann die wirklich lächerlich doofe Frage, warum ich a - nachdem ich die Obergrenze eingesetzt habe - bei 0 als Untergrenze bin ich zu faul - nicht isoliert bekomme. Hinweise?
Ein weiteres Danke geht in deine - aber natürlich auch in die Richtung von jedem (und damit sich niemand beschwert: natürlich auch jeder) der mir sonst einen weiteren Tipp geben kann und mag.
Einen angenehmen Abend euch
der_benni
|
|
|
|
|
Status: |
(Antwort) fehlerhaft | Datum: | 19:23 Fr 26.08.2005 | Autor: | leduart |
Hallo benni
> [mm][mm]Daraus folgt (in meinen Augen - aber ich denke doch, dass ich mich hier nicht täusche) [mm][\bruch{1}{3}ax^3-12x]^{\wurzel{\bruch{12}{a}}}_{0}\[/mm] was -16 sein sollte (Hälfte der Fläche, da 0 die Untergrenze ist)[/mm][/mm]
> [mm][mm] [/mm][/mm]
> [mm][mm]Soweit ok? Jetzt dann die wirklich lächerlich doofe Frage, warum ich a - nachdem ich die Obergrenze eingesetzt habe - bei 0 als Untergrenze bin ich zu faul - nicht isoliert bekomme. Hinweise?[/mm][/mm]
Eingestzt er gibt sich doch:
[mm]\bruch{1}{3}*\wurzel{\bruch{12}{a}}^{3}-12*\wurzel{\bruch{12}{a}}=-16 [/mm]
Wenn du die [mm] Wurzel^{3} [/mm] vereinfachst: [mm]\wurzel{\bruch{12}{a}}^{3}=\bruch{12}{a}*\wurzel{\bruch{12}{a}}[/mm] und dann durch a kürzt ergibt sich:
[mm] \bruch{1}{3}*12*\wurzel{\bruch{12}{a}}-12*\wurzel{\bruch{12}{a}}=-16 ;
- \bruch{2}{3}*12*\wurzel{\bruch{12}{a}} =-16 ; 16*\wurzel{a}=\bruch{2}{3}*12*\wurzel{12}[/mm]
Den schwierigen Rest überlass ich dir jetzt!
Wo lag eigentlich deine Schwierigkeit? Schreib doch immer, wo du genau! steckengeblieben bist!
Gruss leduart
|
|
|
|
|
Hallo zusammen!
Auch dir, leduard, einen großen Dank für deine Mühen.
Bei mir hat's an der Vereinfachung von [mm]\wurzel{\bruch{12}{a}}^{3}=\bruch{12}{a}\cdot{}\wurzel{\bruch{12}{a}}[/mm] gehakt - und zwar mächtig. Es sind (scheinbar) die naheliegenden Dinge, die man dann nicht kontrolliert und sich den Kopf drüber zerbricht.
Eine Rückfrage habe ich noch zu [mm]\bruch{1}{3}*\wurzel{\bruch{12}{a}}^{3}-12*\wurzel{\bruch{12}{a}}=-16[/mm], sollte das nicht [mm]\bruch{a}{3}*\wurzel{\bruch{12}{a}}^{3}-12*\wurzel{\bruch{12}{a}}=-16[/mm] heißen?
Mein weiterer Rechenweg (ausführlich geschrieben) von da aus:
[mm]\bruch{a}{3}*\bruch{12}{a}*\wurzel{\bruch{12}{a}}-12*\wurzel{\bruch{12}{a}}=-16[/mm]
[mm]4*\wurzel{\bruch{12}{a}}-12*\wurzel{\bruch{12}{a}}=-16[/mm]
[mm]-8*\wurzel{\bruch{12}{a}}=-16[/mm]
[mm]\wurzel{\bruch{12}{a}}=2[/mm]
[mm]\bruch{12}{a}=4[/mm]
[mm]12=4a[/mm]
[mm]3=a[/mm]
daraus folgt dann: [mm] f(x)=3x^2-12;
[/mm]
Denke, dass das soweit stimmen sollte - und danke euch allen noch einmal für das mit der Nase daraufstoßen, das nötig war, um mich hier hin zu bringen.
Ein schönes Wochenende
der_benni
(der gucken wird sich im Forum mal zu engagieren - scheint ja Spaß zu machen, lebendig zu sein - und offensichtlich ist es auch noch sinnvoll!)
|
|
|
|
|
Hallo der_benni,
> Bei mir hat's an der Vereinfachung von
> [mm]\wurzel{\bruch{12}{a}}^{3}=\bruch{12}{a}\cdot{}\wurzel{\bruch{12}{a}}[/mm]
> gehakt - und zwar mächtig. Es sind (scheinbar) die
> naheliegenden Dinge, die man dann nicht kontrolliert und
> sich den Kopf drüber zerbricht.
>
> Eine Rückfrage habe ich noch zu
> [mm]\bruch{1}{3}*\wurzel{\bruch{12}{a}}^{3}-12*\wurzel{\bruch{12}{a}}=-16[/mm],
> sollte das nicht
> [mm]\bruch{a}{3}*\wurzel{\bruch{12}{a}}^{3}-12*\wurzel{\bruch{12}{a}}=-16[/mm]
> heißen?
so ist es.
>
> Mein weiterer Rechenweg (ausführlich geschrieben) von da
> aus:
>
> [mm]\bruch{a}{3}*\bruch{12}{a}*\wurzel{\bruch{12}{a}}-12*\wurzel{\bruch{12}{a}}=-16[/mm]
> [mm]4*\wurzel{\bruch{12}{a}}-12*\wurzel{\bruch{12}{a}}=-16[/mm]
> [mm]-8*\wurzel{\bruch{12}{a}}=-16[/mm]
> [mm]\wurzel{\bruch{12}{a}}=2[/mm]
> [mm]\bruch{12}{a}=4[/mm]
> [mm]12=4a[/mm]
> [mm]3=a[/mm]
>
> daraus folgt dann: [mm]f(x)=3x^2-12;[/mm]
>
> Denke, dass das soweit stimmen sollte - und danke euch
> allen noch einmal für das mit der Nase daraufstoßen, das
> nötig war, um mich hier hin zu bringen.
Gruß
MathePower
|
|
|
|