matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration Partialbruchzer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Integration Partialbruchzer
Integration Partialbruchzer < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Partialbruchzer: keine reellen Nullstellen
Status: (Frage) beantwortet Status 
Datum: 16:54 Mo 25.08.2014
Autor: TorbM

Aufgabe
[mm] \integral_{}^{} \bruch{x^3 + x^2 + 6x + 4}{x^4 + 8x^2 + 16} [/mm]


Der Nenner hat keine reellen Nullstellen. Es scheitert jetzt schonmal direkt daran die Nullstellen des Nenners zu berechnen.

[mm] x^4 [/mm] + [mm] 8x^2 [/mm] + 16

[mm] z^2 [/mm] + 8z + 16

z1/2 = -4 [mm] \pm \wurzel{0} [/mm]
z1/2 = [mm] \wurzel{-4} [/mm]
z1/2 = [mm] (2j)^2 [/mm]
z1/2 = [mm] \pm [/mm] 4    ?

Laut Rechner hat die Funktion 4 komplexe Nullstellen, keine Ahnung wie man auf diese kommt. Muss ich die überhaupt berechnen um das Integral zu lösen ?

Ich glaube der Ansatz ist

[mm] \integral_{}^{} \bruch{x^3 + x^2 + 6x + 4}{x^4 + 8x^2 + 16} [/mm] = [mm] \integral_{}^{} \bruch{x^3 + x^2 + 6x + 4}{(x^2 + 4)^2} [/mm]

Naja das war´s auch schon habe keine Ahnung wie ich Integrale berechne wenn der Nenner keine reelle Nullstelle hat.

Wenn ich

[mm] \integral_{}^{} \bruch{x^3 + x^2 + 6x + 4}{x^4 + 8x^2 + 16} [/mm] = [mm] \integral_{}^{} \bruch{x^3 + x^2 + 6x + 4}{(x^2 + 4)^2} [/mm] = [mm] \integral_{}^{} \bruch{Ax + B}{(x^2 + 4)^2} [/mm]

naja müsste ich vorher wissen wieviele Nullstellen die Funktion hat.

        
Bezug
Integration Partialbruchzer: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Mo 25.08.2014
Autor: Diophant

Hallo,

> [mm]\integral_{}^{} \bruch{x^3 + x^2 + 6x + 4}{x^4 + 8x^2 + 16}[/mm]

>

> Der Nenner hat keine reellen Nullstellen. Es scheitert
> jetzt schonmal direkt daran die Nullstellen des Nenners zu
> berechnen.

Das braucht man ja auch nicht. Es genügt eine Zerlegung in Linear- und quadratische Faktoren. Letzteres gelingt hier mühelos, wie du ja selbst erkannt und angewendet hast.

>

> [mm]x^4[/mm] + [mm]8x^2[/mm] + 16

>

> [mm]z^2[/mm] + 8z + 16

>

> z1/2 = -4 [mm]\pm \wurzel{0}[/mm]
> z1/2 = [mm]\wurzel{-4}[/mm]
> z1/2 = [mm](2j)^2[/mm]
> z1/2 = [mm]\pm[/mm] 4 ?

>

> Laut Rechner hat die Funktion 4 komplexe Nullstellen, keine
> Ahnung wie man auf diese kommt. Muss ich die überhaupt
> berechnen um das Integral zu lösen ?

>

> Ich glaube der Ansatz ist

>

> [mm]\integral_{}^{} \bruch{x^3 + x^2 + 6x + 4}{x^4 + 8x^2 + 16}[/mm]
> = [mm]\integral_{}^{} \bruch{x^3 + x^2 + 6x + 4}{(x^2 + 4)^2}[/mm]

>

> Naja das war´s auch schon habe keine Ahnung wie ich
> Integrale berechne wenn der Nenner keine reelle Nullstelle
> hat.

Ein wenig tricky ist das hier schon. Ich hätte folgendes anzubieten:

[mm] \frac{x^3+x^2+6x+4}{(x^2+4)^2}=\frac{x^3+4x}{(x^2+4)^2}+ \frac{2x}{(x^2+4)^2}+ \frac{1}{x^2+4} [/mm]

Dabei werden die Summanden 1) und 3) in Sachen Integration elementar, der mittlere erfordert noch eine denkbra einfache Substitution.


Gruß, Diophant
 

Bezug
                
Bezug
Integration Partialbruchzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 25.08.2014
Autor: TorbM

Wie hast du es so zerlegt ?

Bezug
                        
Bezug
Integration Partialbruchzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 Mo 25.08.2014
Autor: Diophant

Hallo,

> Wie hast du es so zerlegt ?

Wunschdenken: zuerst im Zähler [mm] x^2+4 [/mm] abgespalten, das ergibt nach Kürzen den letzten Summanden. Dann den Nenner ausmultipliziert und abgeleitet. Im Zähler wiederum ein Vielfaches der Ableitung (x 1/4) abgespalten ergibt den ersten Summanden. Der mittlere verbleibt dann und die Substitution erkennt man leicht.


Gruß, Diophant

Bezug
                
Bezug
Integration Partialbruchzer: Ein Summand fehlt noch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Mo 25.08.2014
Autor: M.Rex

Hallo Diophant

Kann es sein, dass du bei deiner Zerlegung das x² vergessen hast?

Korrekt wäre meiner Meinung nach:

$ [mm] \frac{x^3+x^2+6x+4}{(x^2+4)^2}=\frac{x^3+4x}{(x^2+4)^2}+ \frac{2x}{(x^2+4)^2}+ \frac{1}{x^2+4}+\red{\frac{x^{2}}{(x^{2}+4)^{2}}} [/mm] $

Aber auch das ist kein großes Hindernis bei der Integration.

Marius

Bezug
                        
Bezug
Integration Partialbruchzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Mo 25.08.2014
Autor: Diophant

Hallo Marius,



> Hallo Diophant

>

> Kann es sein, dass du bei deiner Zerlegung das x²
> vergessen hast?

>

> Korrekt wäre meiner Meinung nach:

>

> [mm]\frac{x^3+x^2+6x+4}{(x^2+4)^2}=\frac{x^3+4x}{(x^2+4)^2}+ \frac{2x}{(x^2+4)^2}+ \frac{1}{x^2+4}+\red{\frac{x^{2}}{(x^{2}+4)^{2}}}[/mm]

>

> Aber auch das ist kein großes Hindernis bei der
> Integration.

Nein, da ist IMO meine Version richtig. Beginne mal so:

[mm] x^3+x^2+6x+4=x^3+4x+2x+x^2+4 [/mm]

Die beiden letzten Summanden ergeben ja in meiner Version den dritten Bruch, und da kürzt sich dann [mm] x^2+4 [/mm] ja einmal heraus.


Gruß, Diophant

Bezug
                                
Bezug
Integration Partialbruchzer: Hast recht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Mo 25.08.2014
Autor: M.Rex

Hallo Diophant

Sorry, ich hatte nicht gesehen, dass du den letzten Bruch gekürzt hattest, auch dort hatte ich im Zähler das ² vermutet.

Wer lesen kann, ist also meist im Vorteil [pfeif]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]