matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieIntegration auf Quotienten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Integration auf Quotienten
Integration auf Quotienten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration auf Quotienten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:38 Mo 21.12.2009
Autor: BJJ

Hallo,

ich verstehe die Lebesgue Maß- und Integrationstheorie offenbar noch nicht so richtig. Ich habe folgendes Problem:

Angenommen

X = [mm] R^n/G [/mm]

ist der Quotientenraum von [mm] R^n [/mm] unter der Operation einer Permutationsgruppe G.

Es sei nun [mm] (R^n, [/mm] B, P) sei der borelscher Wahrscheinlichkeitsraum auf dem [mm] R^n [/mm] mit Wahrscheinlichkeitsmaß P, das invariant unter Operationen von G ist, d.h. P(x) = P(gx) für alle g [mm] \in [/mm] G.

1. Frage: Wie sieht denn dann der Wahrscheinlichkeitsraum auf X aus, der von [mm] R^n [/mm] induziert wird? Intuitiv würde ich eine abgeschlossene Menge M von [mm] R^n [/mm] konstruieren, die jeden Repräsentanten der Äquivalenzklassen von [mm] R^n/G [/mm]  genau einmal enthält. Dann könnte man im Prinzip ganz normal die Borelschen Mengen auf M betrachten. Nur sehe ich das Problem, dass der Rand von M Repräsentanten einiger Elemente von X mehrfach enthalten könnte.

2. Frage: Angenommen ich habe ein Integral [mm] \integral_{X}f(x) [/mm] dx. Wie würde das Integral auf dem [mm] R^n [/mm] aussehen? Etwa [mm] \integral_{M}f(x) [/mm] dx, wobei M die abgeschlossene Menge von Frage 1 ist und wir einfach davon ausgehen dürfen, dass für die offene Menge [mm] M'\subset [/mm] M mit M [mm] \subset [/mm] cl(M')

[mm] \integral_{M}f(x) [/mm] dx = [mm] \integral_{M'}f(x) [/mm] dx

gilt, weil der Rand von M eine Nullmenge ist?

Danke und beste Grüße

bjj



        
Bezug
Integration auf Quotienten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 25.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]